DEPARTMENT OF THE ARMY TECHNICAL BULLETIN

CORROSION PREVENTION
AND CONTROL

INCLUDING RUSTPROOFING PROCEDURES
FOR
TACTICAL VEHICLES AND TRAILERS

This technical bulletin supersedes TB 43-0213, 22 August 1983.

Approved for public release: distribution is unlimited.

HEADQUARTERS, DEPARTMENT OF THE ARMY

4 December 1990
WARNING SUMMARY

The following is a list of some of the WARNINGS that appear in this Technical Bulletin, as well as general safety precautions that are not related to any specific procedure and do not appear elsewhere in this publication. Rustproofing technicians must become familiar with all warnings and general safety precautions. Severe injury, health hazards, and death can be avoided by technicians who know and understand these warnings.

- High pressure spray can cause serious injury or death. Never put hands, or any other part of the body, in front of the rustproofing spray tool. Severe infection, blood poisoning, and gangrene requiring amputation of a limb can result from skin penetration of the rustproofing material under high pressure. Summon a physician immediately! Inform the physician that the material injected into the skin is a petroleum compound containing aliphatic petroleum naptha with an effect similar to kerosene.

- Injection injuries can occur as a result of pinhole leaks, splits, or rupture in the hosing due to wear, damage, or misuse. Never use a damaged hose. Never attempt to contain sudden hose leaks with hands. Instead, stand clear of ruptures and shut down the pump. Always check hosing and couplings before use. If couplings disconnect during operation, never attempt to recouple with the pump still running. Never mend damaged hose with tape or any other device. Repaired hoses cannot effectively contain high pressure fluids and are extremely dangerous.

- Whenever the rustproofing procedure requires the use of a hoist, ensure that the hoist has the capacity to lift and secure the vehicle. Hoist used must be equipped with a safety bar or safety locking device. Operation of the safety bar or locking device should be checked daily.

- Open air compressors should have drive belts enclosed with a wire mesh screen. Air compressors used must be equipped with a safety valve in good working order.

- Silica exposure hazards exist whenever sand particles are injected into the air. Wet sandblasting lessens health risks, but care must be taken to ensure that applicators use the recommended protective equipment. Silica exposure due to failure to wear protective equipment can result in silicosis, a lung disease similar to emphysema.

- Drilling metals can be extremely dangerous. Wear proper eye protection and keep hands away from cutting tool. Sharp fragments may remain around the drilling area. Use extreme caution when touching these areas.

- DO NOT smoke in the work area. Airborne rustproofing material is flammable. Fire extinguishers must be readily available. Personnel must be familiar with the use of fire extinguishers. Fire extinguishers should be inspected on a regular basis and recharged as soon as possible after use.

- “No Smoking” signs must be prominently displayed in the rustproofing area. Phone numbers for the nearest fire department and ambulance service should be displayed near each phone.

- Rustproofing compound should never be stored in an area where the temperature is above 100 degrees F (38 degrees C). Dispose of empty drums immediately. Solvents must be stored in approved containers (metal cans with automatic safety lids). Excessive amounts of solvents should never be ordered and stored in the facility.

- Personnel must be aware of rustproofing materials and various solvent hazards before using such materials.

- Work areas must be kept clean to prevent accidents. All used rags should be stored in approved safety cans. Debris should not be allowed to accumulate on the work area floor as it will present tripping and fire hazards.

- Goggles or safety glasses and a protective mask should be worn during all phases of the rustproofing procedure. When processing the underside of the vehicle, use of goggles and a safety mask is essential to safety of personnel. Shoes with non-skid soles, an apron glove, and a long-sleeved shirt should also be worn.
Rustproofing work areas must be adequately ventilated. All personnel in immediate adjacent areas where rustproofing material is being sprayed should also wear an approved respirator mask.

High pressure washers can discharge water and debris through vent holes in excess of 1200 psi (8274 kPa). High pressure washer operators must direct all personnel to stand clear of the vehicle during cleaning operations. Operators must wear eye protection to prevent serious injury from wash-back during cleaning operations.

Electrical receptacles in work areas must be properly seated and grounded. Electrical cords used must be in good condition and provide grounding for the tool.

Static electricity is created by a high velocity flow of fluid through the pump and hose. For this reason, the dispensing system must be properly grounded. If not, sparking may occur which can ignite fumes from solvents, dust, or other flammable substances. Spark ignition of flammable materials can result in an explosion and serious bodily injury. To prevent such hazards, ensure that the equipment is properly grounded.

For first aid information, refer to FM 21-11.
DEPARTMENT OF THE ARMY TECHNICAL BULLETIN

CORROSION PREVENTION AND CONTROL
INCLUDING RUSTPROOFING PROCEDURES
FOR TACTICAL VEHICLES AND TRAILERS

REPORTING ERRORS AND RECOMMENDING IMPROVEMENTS

You can help improve this manual. If you find any mistakes or if you know of a way to improve the procedures, please let us know. Mail your letter, DA Form 2028 (Recommended Changes to Publications and Blank Forms), or DA Form 2028-2, located in the back of this manual, direct to: Commander, U.S. Army Tank-Automotive Command, ATTN: AMSTA-MB, Warren, MI 48397-5000, A reply will be furnished to you.

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>INTRODUCTION</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Section I. General</td>
<td>1-1</td>
</tr>
<tr>
<td></td>
<td>Section II. Description and Data</td>
<td>1-1</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>CORROSION PREVENTION AND CONTROL</td>
<td>2-1</td>
</tr>
<tr>
<td></td>
<td>Section I. Rusting - The Electrochemical Reaction</td>
<td>2-1</td>
</tr>
<tr>
<td></td>
<td>Section II. Other Types of Corrosion</td>
<td>2-8</td>
</tr>
<tr>
<td></td>
<td>Section III. Corrosion Removing Compounds</td>
<td>2-12</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>RUSTPROOFING EQUIPMENT/EQUIPMENT MAINTENANCE AND PRELIMINARY INSTRUCTIONS</td>
<td>3-1</td>
</tr>
<tr>
<td></td>
<td>Section I. Rustproofing Equipment and Materials</td>
<td>3-1</td>
</tr>
<tr>
<td></td>
<td>Section II. Rustproofing Application Techniques</td>
<td>3-19</td>
</tr>
<tr>
<td></td>
<td>Section III. Vehicle Preparation</td>
<td>3-21</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>1/4-TON TRUCK: M151, M718, AND M825 SERIES</td>
<td>4-1</td>
</tr>
<tr>
<td></td>
<td>Section I. Preliminary Procedures</td>
<td>4-1</td>
</tr>
<tr>
<td></td>
<td>Section II. Drilling and Cleaning Procedures</td>
<td>4-1</td>
</tr>
<tr>
<td></td>
<td>Section III. Rustproofing Procedures</td>
<td>4-8</td>
</tr>
</tbody>
</table>

* This technical bulletin supersedes TB 43-0213, 22 August 1983.
TABLE OF CONTENTS (Con’t)

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 5</td>
<td>1/4-TON TRUCK: M880 AND M890 SERIES</td>
<td>5-1</td>
</tr>
<tr>
<td>Section I.</td>
<td>Preliminary Procedures</td>
<td>5-1</td>
</tr>
<tr>
<td>Section II.</td>
<td>Drilling and Cleaning Procedures</td>
<td>5-2</td>
</tr>
<tr>
<td>Section III.</td>
<td>Rustproofing Procedures</td>
<td>5-3</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>3/4-TON AND 1 1/4-TON/TRUCK: M1008, M1008A1, M1009, M1010, M1028, AND M1031</td>
<td>6-1</td>
</tr>
<tr>
<td>Section I.</td>
<td>Preliminary Procedures</td>
<td>6-1</td>
</tr>
<tr>
<td>Section II.</td>
<td>Drilling and Cleaning Procedures</td>
<td>6-2</td>
</tr>
<tr>
<td>Section III.</td>
<td>Rustproofing Procedures</td>
<td>6-3</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>2 1/2-TON AND 5-TON TRUCKS: CABS (TYPICAL)</td>
<td>7-1</td>
</tr>
<tr>
<td>Section I.</td>
<td>Preliminary Procedures</td>
<td>7-1</td>
</tr>
<tr>
<td>Section II.</td>
<td>Drilling and Cleaning Procedures</td>
<td>7-2</td>
</tr>
<tr>
<td>Section III.</td>
<td>Rustproofing Procedures</td>
<td>7-3</td>
</tr>
<tr>
<td>Chapter 8</td>
<td>2 1/2-TON CARGO BODY TRUCKS</td>
<td>8-1</td>
</tr>
<tr>
<td>Section I.</td>
<td>Preliminary Procedures</td>
<td>8-1</td>
</tr>
<tr>
<td>Section II.</td>
<td>Drilling and Cleaning Procedures</td>
<td>8-2</td>
</tr>
<tr>
<td>Section III.</td>
<td>Rustproofing Procedures</td>
<td>8-3</td>
</tr>
<tr>
<td>Chapter 9</td>
<td>2 1/2-TON TRUCKS: DUMP BODY AND TAILGATE</td>
<td>9-1</td>
</tr>
<tr>
<td>Section I.</td>
<td>Preliminary Procedures</td>
<td>9-1</td>
</tr>
<tr>
<td>Section II.</td>
<td>Drilling and Cleaning Procedures</td>
<td>9-2</td>
</tr>
<tr>
<td>Section III.</td>
<td>Rustproofing Procedures</td>
<td>9-3</td>
</tr>
<tr>
<td>Chapter 10</td>
<td>2 1/2-TON TRUCKS: WATER TANKERS</td>
<td>10-1</td>
</tr>
<tr>
<td>Section I.</td>
<td>Drilling and Cleaning Procedures</td>
<td>10-1</td>
</tr>
<tr>
<td>Section II.</td>
<td>Rustproofing Procedures</td>
<td>10-2</td>
</tr>
<tr>
<td>Chapter 11</td>
<td>2 1/2-TON TRUCKS: FUEL TANKERS</td>
<td>11-1</td>
</tr>
<tr>
<td>Section I.</td>
<td>Drilling and Cleaning Procedures</td>
<td>11-1</td>
</tr>
<tr>
<td>Section II.</td>
<td>Rustproofing Procedures</td>
<td>11-2</td>
</tr>
<tr>
<td>Chapter 12</td>
<td>2 1/2-TON TRUCKS: VAN BODY</td>
<td>12-1</td>
</tr>
<tr>
<td>Section I.</td>
<td>Cleaning Procedures</td>
<td>12-1</td>
</tr>
<tr>
<td>Section H.</td>
<td>Rustproofing Procedures</td>
<td>12-2</td>
</tr>
<tr>
<td>Chapter 13</td>
<td>5-TON TRUCKS: CARGO BODY</td>
<td>13-1</td>
</tr>
<tr>
<td>Section I.</td>
<td>Preliminary Procedures</td>
<td>13-1</td>
</tr>
<tr>
<td>Section II.</td>
<td>Drilling and Cleaning Procedures</td>
<td>13-2</td>
</tr>
<tr>
<td>Section III.</td>
<td>Rustproofing Procedures</td>
<td>13-3</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (Con’t)

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section I</th>
<th>Section II</th>
<th>Section III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 14</td>
<td>5-TON TRUCKS: DUMP BODY AND TAILGATE</td>
<td>Preliminary Procedures</td>
<td>Drilling and Cleaning Procedures</td>
</tr>
<tr>
<td>14-1</td>
<td>14-1</td>
<td>14-1</td>
<td>14-1</td>
</tr>
<tr>
<td>Chapter 15</td>
<td>5-TON TRUCKS: EXPANSIBLE VAN BODY</td>
<td>Drilling and Cleaning Procedures</td>
<td>Rustproofing Procedures</td>
</tr>
<tr>
<td>15-1</td>
<td>15-1</td>
<td>15-2</td>
<td></td>
</tr>
<tr>
<td>Chapter 16</td>
<td>5-TON TRUCKS WRECKER BODY</td>
<td>Drilling and Cleaning Procedures</td>
<td>Rustproofing Procedures</td>
</tr>
<tr>
<td>16-1</td>
<td>16-1</td>
<td>16-2</td>
<td></td>
</tr>
<tr>
<td>Chapter 17</td>
<td>M911 SERIES TRACTOR</td>
<td>Preliminary Procedures</td>
<td>Drilling and Cleaning Procedures</td>
</tr>
<tr>
<td>17-1</td>
<td>17-1</td>
<td>17-1</td>
<td>17-2</td>
</tr>
<tr>
<td>Chapter 18</td>
<td>M915 SERIES TRACTOR</td>
<td>Preliminary Procedures</td>
<td>Drilling and Cleaning Procedures</td>
</tr>
<tr>
<td>18-1</td>
<td>18-1</td>
<td>18-1</td>
<td>18-2</td>
</tr>
<tr>
<td>Chapter 19</td>
<td>M977, M978, M984 and M985 SERIES TRUCKS (HEMTT)</td>
<td>Preliminary Procedures</td>
<td>Drilling and Cleaning Procedures</td>
</tr>
<tr>
<td>19-1</td>
<td>19-1</td>
<td>19-1</td>
<td>19-3</td>
</tr>
<tr>
<td>Chapter 20</td>
<td>M966, M977, M1025, M1035, M1036, M1037, M1038, M1042, M1043, M1044, and M1046 SERIES TRUCKS (HMNIVV)</td>
<td>Preliminary Procedures</td>
<td>Drilling and Cleaning Procedures</td>
</tr>
<tr>
<td>20-1</td>
<td>20-1</td>
<td>20-2</td>
<td>20-4</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (Con’t)

Chapter 21 1/4-TON TRAILER M416 SERIES .. 21-1
 Section I. Cleaning Procedures .. 21-1
 Section II. Rustproofing Procedures .. 21-1

Chapter 22 3/4-ToN TRAILER. M101 SERIES .. 22-1
 Section I. Drilling and Cleaning Procedures 22-1
 Section II. Rustproofing Procedures .. 22-3

Chapter 23 1 1/2-TON CARGO TRAILER M105 SERIES 23-1
 Section I. Drilling and Cleaning Procedures 23-1
 Section II. Rustproofing Procedures .. 23-2

APPENDIX A REFERENCES ... A-1

APPENDIX B CORROSION AREAS. ... B-1

APPENDIX C RUST REPAIR PARTS/REPAIR KITS C-1

APPENDIX D RUST REPAIR AND BODY REPLACEMENT INSTRUCTIONS FOR M151, M718, AND M825 SERIES Trucks D-1

APPENDIX E FABRICATED TOOLS ... E-1
 Section I. Straight-Edge Floor Scraper .. E-1
 Section II. Looped Scraper ... E-2

APPENDIX F GLOSSARY OF TERMS .. F-1

INDEX .. Index 1

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Tactical Vehicle Rustproofing Instructions</td>
<td>1-2</td>
</tr>
<tr>
<td>1-2</td>
<td>Trailer Rustproofing Instructions</td>
<td>1-3</td>
</tr>
<tr>
<td>Table</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>1-3</td>
<td>Corrosion Prevention Materials and Their Hazards</td>
<td>1-5</td>
</tr>
<tr>
<td>1-4</td>
<td>Toxic Hazard Ratings of Rustproofing Material</td>
<td>1-6</td>
</tr>
<tr>
<td>1-5</td>
<td>Airborne Concentration Threshold Limits for Rustproofing Material</td>
<td>1-7</td>
</tr>
<tr>
<td>2-1</td>
<td>The Galvanic Corrosion Potential of Differing Metals</td>
<td>2-10</td>
</tr>
<tr>
<td>2-2</td>
<td>The Corrosive Effects of Fuel Oil, Coolants, and Other Fluids</td>
<td>2-11</td>
</tr>
<tr>
<td>2-3</td>
<td>Corrosive Damage Potential During Tests, Services, or Storage</td>
<td>2-12</td>
</tr>
<tr>
<td>3-1</td>
<td>Rustproofing Compounds</td>
<td>3-1</td>
</tr>
<tr>
<td>3-2</td>
<td>Rustproofing Equipment</td>
<td>3-2</td>
</tr>
<tr>
<td>3-3</td>
<td>Troubleshooting Powerwash Equipment</td>
<td>3-13</td>
</tr>
<tr>
<td>3-4</td>
<td>Troubleshooting Material Pumps</td>
<td>3-14</td>
</tr>
<tr>
<td>B-1</td>
<td>Recommended Wash Intervals by Severity of Corrosion Areas</td>
<td>B-1</td>
</tr>
<tr>
<td>C-1</td>
<td>Rust Repair Parts/Repair Kit</td>
<td>C-1</td>
</tr>
<tr>
<td>D-1</td>
<td>Underbody Corrosion Repair Kit</td>
<td>D-1</td>
</tr>
<tr>
<td>D-2</td>
<td>Body Replacement Kit</td>
<td>D-15</td>
</tr>
<tr>
<td>D-3</td>
<td>Specific Torque Values</td>
<td>D-17</td>
</tr>
<tr>
<td>D-4</td>
<td>Standard Torque Values</td>
<td>D-20</td>
</tr>
</tbody>
</table>
 Section I. GENERAL

1-1. Purpose.

a. This technical bulletin (TB) provides an overview of the U.S. Army’s Corrosion Prevention and Control (CPC) program, as well as specific instructions for rustproofing select tactical wheeled vehicles and trailers.

b. This technical bulletin defines types of corrosion as well as key corrosion prevention techniques and materials, material application instructions, and important application safety hazards. This bulletin describes rustproofing equipment available to using units. Equipment operation, maintenance, and troubleshooting procedures are also covered.

c. This technical bulletin is designed to provide a better understanding of rust, its causes, treatment, and prevention. It includes a detailed introduction to rustproofing materials, equipment, and application techniques. Finally, it contains vehicle specific instructions for rustproofing all tactical vehicles and trailers listed in Tables 1-1 and 1-2.

d. One additional objective of this technical bulletin is to provide rustproofers with the expertise necessary to adapt rustproofing techniques to other vehicles and trailers not specifically addressed in this TB.

1-2. Scope.

a. These instructions are applicable to all commands, units (including Army National Guard and Army Reserve), installations, and activities. Implementation of this bulletin by commanders is mandatory wherever corrosion prone or corrosion hazard environments dictate essentiality of corrosion prevention measures.

b. Saltwater coastal areas, high humidity regions, and all locations requiring use of halite (road salt) for snow and ice removal are prime areas for the applications of CPC measures. Areas prone to industrial pollution, atmospheric pollution (smog), and acid rain are also prime areas for application.

1-3. Reporting of Equipment improvement Recommendations (EIRs).

EIRs can be submitted by anyone who is aware of an unsatisfactory condition, material, material application procedure, as well as with any unsatisfactory condition in the design or use of any of the rustproofing equipment described herein. It is not necessary to show a new design or to list a better way to perform a procedure. Rather, simply tell why a procedure is difficult. EIRs may be submitted on Standard Form 368 (Quality Deficiency Report). Mail directly to: Commander, U.S. Army Tank-Automotive Command, ATTN: AMSTA-QRT, Warren, MI 48397-5000. A reply will be furnished directly to you.

a. Unit participation in the CPC Program is mandatory. At the very least, unit participation is limited to scheduled Preventive Maintenance Checks and Services (PMCS). This is because corrosion awareness and early preventive measures greatly reduce Army vehicle maintenance cost and extend the service life of all equipment.

b. The following regulation applies to the Corrosion Prevention and Control Program: AR 750-59, Corrosion Prevention and Control.

1-5. Vehicie Applications.

a. Table 1-1 lists all tactical vehicles with specific rustproofing instructions in this TB. This list is in simple alphanumeric order according to model number and provides the chapter(s) where each model’s rustproofing instructions can be found.

b. Table 1-2 lists all trailers presented in this TB along with chapter references.
Table 1-1. Tactical Vehicle Rustproofing Instructions.

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Vehicle Series</th>
<th>Chap</th>
</tr>
</thead>
<tbody>
<tr>
<td>M34</td>
<td>Truck, Cargo, 2½-Ton</td>
<td>M44</td>
<td>7,8</td>
</tr>
<tr>
<td>M35</td>
<td>Truck, Cargo, 2½-Ton</td>
<td>M44</td>
<td>7,8</td>
</tr>
<tr>
<td>M35A1</td>
<td>Truck, Cargo, 2½-Ton</td>
<td>M44</td>
<td>7,8</td>
</tr>
<tr>
<td>M35A2</td>
<td>Truck, Cargo, 2½-Ton</td>
<td>M44</td>
<td>7,8</td>
</tr>
<tr>
<td>M35A2C</td>
<td>Truck, Cargo, 2½-Ton</td>
<td>M44</td>
<td>7,8</td>
</tr>
<tr>
<td>M36A2</td>
<td>Truck, Cargo, 2½-Ton</td>
<td>M44</td>
<td>7,8</td>
</tr>
<tr>
<td>M49A1C</td>
<td>Truck, Fuel Tanker, 2½-Ton</td>
<td>M44</td>
<td>7,11</td>
</tr>
<tr>
<td>M49A2C</td>
<td>Truck, Fuel Tanker, 2½-Ton</td>
<td>M44</td>
<td>7,11</td>
</tr>
<tr>
<td>M49C</td>
<td>Truck, Fuel Tanker, 2½-Ton</td>
<td>M44</td>
<td>7,11</td>
</tr>
<tr>
<td>M50A1</td>
<td>Truck, Water Tanker, 2½-Ton</td>
<td>M44</td>
<td>7,10</td>
</tr>
<tr>
<td>M50A2</td>
<td>Truck, Water Tanker, 2½-Ton</td>
<td>M44</td>
<td>7,10</td>
</tr>
<tr>
<td>M50A3</td>
<td>Truck, Water Tanker, 2½-Ton</td>
<td>M44</td>
<td>7,10</td>
</tr>
<tr>
<td>M51</td>
<td>Truck, Dump, 5-Ton</td>
<td>M39</td>
<td>7,14</td>
</tr>
<tr>
<td>M51A1</td>
<td>Truck, Dump, 5-Ton</td>
<td>M39</td>
<td>7,14</td>
</tr>
<tr>
<td>M51A2</td>
<td>Truck, Dump, 5-Ton</td>
<td>M39</td>
<td>7,14</td>
</tr>
<tr>
<td>M52</td>
<td>Truck, Tractor, 5-Ton</td>
<td>M39</td>
<td>7</td>
</tr>
<tr>
<td>M52A2</td>
<td>Truck, Tractor, 5-Ton</td>
<td>M39</td>
<td>7</td>
</tr>
<tr>
<td>M54</td>
<td>Truck, Cargo, 5-Ton (Dropside)</td>
<td>M39</td>
<td>7,13</td>
</tr>
<tr>
<td>M54A1</td>
<td>Truck, Cargo, 5-Ton (Dropside)</td>
<td>M39</td>
<td>7,13</td>
</tr>
<tr>
<td>M54A1C</td>
<td>Truck, Cargo, 5-Ton (Dropside)</td>
<td>M39</td>
<td>7,13</td>
</tr>
<tr>
<td>M54A2</td>
<td>Truck, Cargo, 5-Ton (Dropside)</td>
<td>M39</td>
<td>7,13</td>
</tr>
<tr>
<td>M54A2C</td>
<td>Truck, Cargo, 5-Ton (Dropside)</td>
<td>M39</td>
<td>7,13</td>
</tr>
<tr>
<td>M55</td>
<td>Truck, Van, 2½-Ton</td>
<td>M44</td>
<td>7,12</td>
</tr>
<tr>
<td>M55A1</td>
<td>Truck, Van, 2½-Ton</td>
<td>M44</td>
<td>7,12</td>
</tr>
<tr>
<td>M109</td>
<td>Truck, Utility, ½-Ton</td>
<td>M151</td>
<td>4</td>
</tr>
<tr>
<td>M109A1</td>
<td>Truck, Utility, ½-Ton</td>
<td>M151</td>
<td>4</td>
</tr>
<tr>
<td>M109A3</td>
<td>Truck, Utility, ½-Ton</td>
<td>M151</td>
<td>4</td>
</tr>
<tr>
<td>M151</td>
<td>Truck, Utility, ½-Ton</td>
<td>M151</td>
<td>4</td>
</tr>
<tr>
<td>M151A1</td>
<td>Truck, Utility, ½-Ton</td>
<td>M151</td>
<td>4</td>
</tr>
<tr>
<td>M151A1C</td>
<td>Truck, Utility, ½-Ton</td>
<td>M151</td>
<td>4</td>
</tr>
<tr>
<td>M151A2</td>
<td>Truck, Utility, ½-Ton</td>
<td>M151</td>
<td>4</td>
</tr>
<tr>
<td>M151A2D</td>
<td>Truck, Utility, ½-Ton</td>
<td>M151</td>
<td>4</td>
</tr>
<tr>
<td>M185A2</td>
<td>Truck, Van, 2½-Ton</td>
<td>M44</td>
<td>7</td>
</tr>
<tr>
<td>M185A3</td>
<td>Truck, Van, 2½-Ton</td>
<td>M44</td>
<td>7</td>
</tr>
<tr>
<td>M275A1</td>
<td>Truck, Tractor, 2½-Ton</td>
<td>M44</td>
<td>7</td>
</tr>
<tr>
<td>M275A2</td>
<td>Truck, Tractor, 2½-Ton</td>
<td>M44</td>
<td>7</td>
</tr>
<tr>
<td>M291A1</td>
<td>Truck, Van, 5-Ton</td>
<td>M39</td>
<td>7</td>
</tr>
<tr>
<td>M291A1D</td>
<td>Truck, Van, 5-Ton</td>
<td>M39</td>
<td>7</td>
</tr>
<tr>
<td>M291A2D</td>
<td>Truck, Van, 5-Ton</td>
<td>M39</td>
<td>7</td>
</tr>
<tr>
<td>M342</td>
<td>Truck, Dump, 2½-Ton</td>
<td>M44</td>
<td>7,9</td>
</tr>
<tr>
<td>M342A2</td>
<td>Truck, Dump, 2½-Ton</td>
<td>M44</td>
<td>7,9</td>
</tr>
<tr>
<td>M543</td>
<td>Truck, Wrecker, 5-Ton</td>
<td>M39</td>
<td>7</td>
</tr>
<tr>
<td>M543A1</td>
<td>Truck, Wrecker, 5-Ton</td>
<td>M39</td>
<td>7</td>
</tr>
<tr>
<td>M543A2</td>
<td>Truck, Wrecker, 5-Ton</td>
<td>M39</td>
<td>7</td>
</tr>
<tr>
<td>M718</td>
<td>Truck, Ambulance, ½-Ton</td>
<td>M151</td>
<td>4</td>
</tr>
<tr>
<td>M718A1</td>
<td>Truck, Ambulance, ½-Ton</td>
<td>M151</td>
<td>4</td>
</tr>
<tr>
<td>M756A2</td>
<td>Truck, Pipeline, 2½-Ton</td>
<td>M44</td>
<td>7</td>
</tr>
<tr>
<td>M764</td>
<td>Truck, Poleseating, 2½-Ton</td>
<td>M44</td>
<td>7</td>
</tr>
<tr>
<td>M813A1</td>
<td>Truck, Cargo, 5-Ton</td>
<td>M809</td>
<td>7</td>
</tr>
<tr>
<td>M814</td>
<td>Truck, Cargo, 5-Ton</td>
<td>M809</td>
<td>7</td>
</tr>
<tr>
<td>M815</td>
<td>Truck, Bolster, Logging, 5-Ton</td>
<td>M809</td>
<td>7</td>
</tr>
<tr>
<td>M816</td>
<td>Truck, Wrecker, 5-Ton</td>
<td>M809</td>
<td>7</td>
</tr>
<tr>
<td>M817</td>
<td>Truck, Dump, 5-Ton</td>
<td>M809</td>
<td>7</td>
</tr>
<tr>
<td>M818</td>
<td>Truck, Tractor, 5-Ton</td>
<td>M809</td>
<td>7</td>
</tr>
<tr>
<td>M819</td>
<td>Truck, Tractor-Wrecker, 5-Ton</td>
<td>M809</td>
<td>7</td>
</tr>
<tr>
<td>M820</td>
<td>Truck, Van, Expandible, 5-Ton</td>
<td>M809</td>
<td>7</td>
</tr>
<tr>
<td>M820A1</td>
<td>Truck, Van, Expandible, 5-Ton</td>
<td>M809</td>
<td>7</td>
</tr>
<tr>
<td>M820A2</td>
<td>Truck, Va-1, Expandible, 5-Ton</td>
<td>M809</td>
<td>7</td>
</tr>
<tr>
<td>M821</td>
<td>Truck, Stake, Bridge, 5-Ton</td>
<td>M809</td>
<td>7</td>
</tr>
<tr>
<td>M825</td>
<td>Truck, Utility, ½-Ton (w/106 Recoil)</td>
<td>M151</td>
<td>4</td>
</tr>
<tr>
<td>M880</td>
<td>Truck, Cargo, 1½-Ton</td>
<td>M880</td>
<td>5</td>
</tr>
<tr>
<td>M881</td>
<td>Truck, Cargo, 1½-Ton</td>
<td>M880</td>
<td>5</td>
</tr>
<tr>
<td>M882</td>
<td>Truck, Cargo, 1½-Ton</td>
<td>M880</td>
<td>5</td>
</tr>
<tr>
<td>M883</td>
<td>Truck, Cargo, 1½-Ton</td>
<td>M880</td>
<td>5</td>
</tr>
<tr>
<td>M884</td>
<td>Truck, Cargo, 1½-Ton</td>
<td>M880</td>
<td>5</td>
</tr>
<tr>
<td>M885</td>
<td>Truck, Cargo, 1½-Ton</td>
<td>M880</td>
<td>5</td>
</tr>
<tr>
<td>M886</td>
<td>Truck, Ambulance, 1½-Ton</td>
<td>M880</td>
<td>5</td>
</tr>
<tr>
<td>M888</td>
<td>Truck, Telephone Maint., 1½-Ton</td>
<td>M880</td>
<td>5</td>
</tr>
<tr>
<td>M890</td>
<td>Truck, Cargo, 1½-Ton</td>
<td>M880</td>
<td>5</td>
</tr>
<tr>
<td>M891</td>
<td>Truck, Cargo, 1½-Ton</td>
<td>M880</td>
<td>5</td>
</tr>
<tr>
<td>M892</td>
<td>Truck, Cargo, 1½-Ton</td>
<td>M880</td>
<td>5</td>
</tr>
<tr>
<td>M893</td>
<td>Truck, Ambulance, 1½ Ton</td>
<td>M880</td>
<td>5</td>
</tr>
<tr>
<td>M911</td>
<td>Truck, Tractor, C-HET</td>
<td>M911</td>
<td>17</td>
</tr>
<tr>
<td>M915</td>
<td>Truck, Tractor, Line Haul, HET</td>
<td>M915</td>
<td>18</td>
</tr>
<tr>
<td>M916</td>
<td>Truck, Tractor, LET</td>
<td>M915</td>
<td>18</td>
</tr>
<tr>
<td>M917</td>
<td>Truck, Dump, 20-Ton</td>
<td>M915</td>
<td>18</td>
</tr>
<tr>
<td>M918</td>
<td>Truck, Bituminous Distributor</td>
<td>M915</td>
<td>18</td>
</tr>
</tbody>
</table>
Table 1-1. Tactical Vehicle Rustproofing Instructions (Con’t).

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Vehicle Series</th>
<th>Chap</th>
</tr>
</thead>
<tbody>
<tr>
<td>M919</td>
<td>Truck, Concrete Mixer</td>
<td>M915</td>
<td>18</td>
</tr>
<tr>
<td>M923</td>
<td>Truck, Cargo, 5-Ton (Dropside)</td>
<td>M939</td>
<td>7,13</td>
</tr>
<tr>
<td>M923A1</td>
<td>Truck, Cargo, 5-Ton (Dropside)</td>
<td>M939</td>
<td>7,13</td>
</tr>
<tr>
<td>M923A2</td>
<td>Truck, Cargo, 5-Ton (Dropside)</td>
<td>M939</td>
<td>7,13</td>
</tr>
<tr>
<td>M924</td>
<td>Truck, Cargo, 5-Ton (Dropside)</td>
<td>M939</td>
<td>7,13</td>
</tr>
<tr>
<td>M925</td>
<td>Truck, Cargo, 5-Ton (Dropside)</td>
<td>M939</td>
<td>7,13</td>
</tr>
<tr>
<td>M925A1</td>
<td>Truck, Cargo, 5-Ton (Dropside)</td>
<td>M939</td>
<td>7,13</td>
</tr>
<tr>
<td>M925A2</td>
<td>Truck, Cargo, 5-Ton (Dropside)</td>
<td>M939</td>
<td>7,13</td>
</tr>
<tr>
<td>M926</td>
<td>Truck, Cargo, 5-Ton (Dropside)</td>
<td>M939</td>
<td>7,13</td>
</tr>
<tr>
<td>M926A1</td>
<td>Truck, Cargo, 5-Ton (Dropside)</td>
<td>M939</td>
<td>7,13</td>
</tr>
<tr>
<td>M926A2</td>
<td>Truck, Cargo, 5-Ton (Dropside)</td>
<td>M939</td>
<td>7,13</td>
</tr>
<tr>
<td>M927</td>
<td>Truck, Cargo, 5-Ton (XLWB)</td>
<td>M939</td>
<td>7,13</td>
</tr>
<tr>
<td>M927A1</td>
<td>Truck, Cargo, 5-Ton (XLWB)</td>
<td>M939</td>
<td>7,13</td>
</tr>
<tr>
<td>M927A2</td>
<td>Truck, Cargo, 5-Ton (XLWB)</td>
<td>M939</td>
<td>7,13</td>
</tr>
<tr>
<td>M928</td>
<td>Truck, Cargo, 5-Ton (XLWB)</td>
<td>M939</td>
<td>7,13</td>
</tr>
<tr>
<td>M928A1</td>
<td>Truck, Cargo, 5-Ton (XLWB)</td>
<td>M939</td>
<td>7,13</td>
</tr>
<tr>
<td>M928A2</td>
<td>Truck, Cargo, 5-Ton (XLWB)</td>
<td>M939</td>
<td>7,13</td>
</tr>
<tr>
<td>M929</td>
<td>Truck, Dump, 5-Ton</td>
<td>M939</td>
<td>7,14</td>
</tr>
<tr>
<td>M929A1</td>
<td>Truck, Dump, 5-Ton</td>
<td>M939</td>
<td>7,14</td>
</tr>
<tr>
<td>M929A2</td>
<td>Truck, Dump, 5-Ton</td>
<td>M939</td>
<td>7,14</td>
</tr>
<tr>
<td>M930</td>
<td>Truck, Dump, 5-Ton</td>
<td>M939</td>
<td>7,14</td>
</tr>
<tr>
<td>M930A1</td>
<td>Truck, Dump, 5-Ton</td>
<td>M939</td>
<td>7,14</td>
</tr>
<tr>
<td>M930A2</td>
<td>Truck, Dump, 5-Ton</td>
<td>M939</td>
<td>7,14</td>
</tr>
<tr>
<td>M931</td>
<td>Truck, Tractor, 5-Ton</td>
<td>M939</td>
<td>7</td>
</tr>
<tr>
<td>M931A1</td>
<td>Truck, Tractor, 5-Ton</td>
<td>M939</td>
<td>7</td>
</tr>
<tr>
<td>M931A2</td>
<td>Truck, Tractor, 5-Ton</td>
<td>M939</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 1-2. Trailer Rustproofing Instructions.

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Vehicle Series</th>
<th>Chap</th>
</tr>
</thead>
<tbody>
<tr>
<td>M101</td>
<td>½-Ton Trailer</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>M105</td>
<td>¾-Ton Cargo Trailer</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>M416</td>
<td>½-Ton Trailer</td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

1-6. Glossary.

Appendix F contains a Glossary of Terms that applies to the rustproofing process and various components of the vehicles discussed in this technical bulletin.

1-7. Abbreviations.

ACGIH – American Conference of Governmental Industrial Hygienists
CARC – Chemical Agent Resistant Coatings
CONUS – Continental United States
CPC – Corrosion Prevention and Control
EIRs – Equipment Improvement Recommendations
FRG – Federal Republic of Germany
OEM – Original Equipment Manufactured
PMCS – Preventive Maintenance Checks and Services
QDR – Quality Deficiency Report
ROK – Republic of Korea
SFT – support
SUSP – Suspension
XMBR – Crossmember
SECTION II. DESCRIPTION AND DATA

1-8 General.

a. This section outlines the U.S. Army’s Corrosion Prevention and Control (CPC) Program as well as the generic/specific approaches toward rustproofing being presented in this technical bulletin.

b. Special considerations and data regarding material hazards, toxic dosage levels, and toxic dosage ratings are also presented.

c. Finally, some common misunderstandings regarding rustproofing materials and applications are clarified.

1-9. The Problem.

a. Corrosion is formally defined as a process of dissolving or wearing away, especially of metals. The world itself is a highly corrosive environment in which the dissolution and wearing away of metals and other materials is a constant and on-going process.

b. The fundamental source of corrosion is water in the form of rain, streams, dew, or humidity. One way or another, water touches upon every exposed and air-reachable surface on this planet.

c. A second major source of corrosion is sunlight. More specifically, the sun’s ultraviolet rays work to compromise or destroy organic materials such as rubber and paints.

d. Plant life also contributes to the problem of corrosion by producing gases such as ammonia. Recently, scientists discovered that bogs, marshes, and other wetlands of this earth also give off large quantities of dimethyl sulfide and hydrogen sulfide. These gases happen to be the main chemical ingredients of acid rain which was once believed to be produced solely by industrial pollutants.

e. Corrosion is a by-product of our own natural environment. It is also a natural process, nature’s way of returning metals and other materials to their natural state.

f. Rusting is the most common form of corrosion in the world today. It causes an estimated $176 billion worth of damage annually in the United States alone. U.S. Army vehicles, because of their intended uses and functions, are particularly susceptible to rusting. Such vehicles are expected to travel off-the-road and overland through streams and mire in order to accomplish their mission. The elements—rain, sun, snow, heat, frost, and humidity—all contribute to the vulnerability of U.S. Army vehicles, as do mud, dust, and stones from the roads impacting on their undersides.

g. The potential for U.S. military losses due to corrosion is 11.4 percent of our national losses. Today this figure would exceed $20 billion annually.

a. Corrosion Prevention and Control (CPC) is an Army-wide effort to improve vehicle readiness and to extend the service life of both current and future vehicle inventories. Reductions in Army maintenance requirements, vehicle downtimes, and the high costs of repairs are also important objectives of this program.

b. While rustproofing is a major emphasis of CPC, it is only one part of the overall CPC program which includes Army initiatives in the following areas:

(1) Design. Army Tank-Automotive procurement now places a greater emphasis on corrosion free design in all future vehicle buys. This includes eliminating or designing out rust-prone areas, such as pockets and sills in vehicle design, whenever possible as well as a design preference for corrosion free/corrosion resistant materials in the construction of new equipment. Army procurement design considerations also include the vehicle’s manufacturing process and the stowage requirements of the vehicle. To influence design in these directions, the Army has produced a “Design Guide” for private industry that includes corrosion free design considerations, lessons learned, and material selection considerations. In addition, an accelerated corrosion test that compresses fifteen years of service life into a twelve month test period has been added to the Army’s new equipment test and acceptance standards. This fact itself influences future vehicle designs within private industry.

(2) Training. CPC training efforts have been initiated toward a greater awareness of corrosion and corrosion prevention on the part of Army managers, private industry, and equipment users. This greater awareness is being accomplished by means of the design guide contract requirements, the Corrosion Prevention and Control Program Regulation (see paragraph 1-4), and through formal classroom training and updates to all vehicle specific Army technical manuals. Corrosion detection, for example, will soon be a standard semiannual inspection in the Preventive Maintenance Checks and Services (PMCS) tables for all tank-automotive equipment.
(3) **Management.** To ensure that CPC is emphasized during the deployment of hardware, the Army has undertaken a program to formalize CPC standards and requirements. All future ordinance contracts will be written to include CPC considerations and will be reinforced by a forthcoming Army regulation regarding corrosion resistant standards. Automotive representatives in the fields of Production Management, Engineering Item Quality Assurance, Procurement, Contracts, and Equipment Specialists are being called upon to ensure implementation of CPC in the evaluation, test, and selection of new equipment.

(4) **Maintenance.** The Army has expanded the Army Oil Analysis Program (AOAP) to include testing for the presence of iron oxides in the component oil samples. Also, a corrosion digest providing “lessons learned” as well as information resulting from Army research projects is being developed. Finally, units are being encouraged to submit Quality Deficiency Reports (QDRs) regarding corrosion prevention and control.

(5) **Technology.** Army research projects in corrosion prevention and control include new studies in the chemical transformation of rusted metal into a solid, alternative material. Development of a durable, multipurpose and corrosion resistant grease is also being reviewed by Army scientists and engineers along with an evaluation of improved diesel fuel stabilizers. Tests are also underway to evaluate the use of composite materials instead of rust-prone metals in some vehicle design applications. Double galvanized body designs are also under evaluation by the Army. The actual list of projects and programs underway is far more extensive, but the above does indicate some key technological directions the Army is taking to combat corrosion and extend the service life of Army equipment.

1-11. **Special Tools.**

* a. There are several areas on tactical vehicles and trailers which cannot be cleaned even with repeated power washings. Nevertheless, such areas must be clean prior to rustproofing. Chisels, putty knives, masonry drills, punches, and other tools may be readily available.

* b. A looped scraper, for use in curved areas or hard-to-reach places, can be fabricated from standard shop stock. A straight-edge floor scraper to help clean up drippings that have pancaked on the shop floor can also be fabricated from available stock. Refer to Appendix E for instructions on the fabrication of these tools.

1-12. **Material Hazards.**

* a. Extreme care must be taken whenever handling, mixing, and/or applying corrosion removing compounds or rustproofing material. Rustproofers must first become completely familiar with the peculiar properties and hazards of each compound before mixing and applying the compound to any surface. Refer to Chapter 2, Section III for a list of available compounds and their hazards.

* b. Rustproofing materials themselves can become extremely dangerous if injected into the skin. Such an injury can occur if the rustproofer comes into contact with the nozzle tip during the rustproofing operation. This can also accidentally occur if the rustproofing equipment develops any pinhole leak, split, or rupture due to wear, damage, or misuse. Never attempt to contain leaks with hands. In addition, if fittings disconnect during operation, never attempt to couple the hosing until after the pump is shut off. Never use a damaged hose or attempt to mend hosing with tape or any other device. Repaired hoses cannot contain high pressure fluids and are extremely dangerous. Injection injuries can result in severe infection, blood poisoning, and possibly, gangrene, which could lead to amputation.

* c. In addition to injection injuries, toxic hazards exist from inhalation, ingestion, or skin contact with rustproofing materials. Refer to Table 1-3 for a list of materials and their associated hazards. Refer to Table 1-4 for toxic hazard ratings of rustproofing material. Refer to Table 1-5 for toxic dosage ratings.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Hazards</th>
<th>Preventive Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rustproofing Material (Aliphatic Petroleum Naphtha)</td>
<td>• Blood Poisoning if Injected Into skin (Suspended in Air)</td>
<td>• Avoid Contact with Tip/Ruptures in Line</td>
</tr>
<tr>
<td></td>
<td>• Eye, Ear, Skin Irritant in Mist</td>
<td>• Protective Mask, Glasses, Clothing, Gloves</td>
</tr>
<tr>
<td></td>
<td>• Moderate Hazard if Swallowed</td>
<td>• Keep Hands Away from Face/Keep Face Clean</td>
</tr>
<tr>
<td></td>
<td>• Moderate to High Respiratory Hazard in Mist</td>
<td>• Protective Mask</td>
</tr>
<tr>
<td></td>
<td>• Flammable in Bulk</td>
<td>• No Smoking/No Open Flame</td>
</tr>
<tr>
<td></td>
<td>• Explosive in Mist (Open Flame/Static Electricity)</td>
<td>• No Smoking/Ground Equipment Pump</td>
</tr>
</tbody>
</table>

Table 1-3. Corrosion Prevention Materials and Their Hazards.

a. Rustproofing material is toxic. This means that it can be harmful to the human body. If properly handled and applied, the toxic hazard rating of rustproofing material is slight to moderate. The factors that determine the toxicity of rustproofing material are:

- The amount of the material suspended in the air (measured in parts per million).
- The duration of exposure (or the amount of time the rustproofer remains in the contaminated area).
- The size of the rustproofing materials' airborne particles.
- The individual's sensitivity to the rustproofing material.

The reaction of different people exposed to rustproofing material and application hazards may vary widely. Individuals subjected to the same duration and concentration may have reactions as unlike as no effect whatsoever, to severe poisoning. The exact reason for this is unknown.

1-14. Toxic Hazard Ratings.

a. Toxic dosage is measured in threshold limits. These limits are set by the American Conference of Governmental Industrial Hygienists (ACGIH), and represent conditions under which a majority of workers can be repeatedly exposed to airborne concentrations of rustproofing material without a harmful effect.

b. The toxicity hazard itself is measured by each unit's Safety Office or Logistics Officer. It is measured in parts per million (ppm).

c. Table 1-5 indicates the threshold limits and their toxicity. This table provides acceptable standards that represent a time-weighted average concentration for a normal eight hour, five day work week. The threshold limit value for rustproofing material is 500 ppm. If airborne concentrations of the material exceed this limit during a normal work week, the operation must be shut down until the air is cleared.
Table 1-5. Airborne Concentration Threshold Limits for Rustproofing Material per Work Week.*

<table>
<thead>
<tr>
<th>Toxicity (Danger)</th>
<th>Average Concentration (Parts Per Million)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slight</td>
<td>0–100</td>
</tr>
<tr>
<td>Moderate</td>
<td>101–500</td>
</tr>
<tr>
<td>High</td>
<td>Over 500</td>
</tr>
</tbody>
</table>

* Standards Established by American Conference of Governmental Industrial Hygienists

a. Prevention. Prevention of toxic hazard related injuries depends upon good equipment maintenance. Understanding the nature of hazards and applying common sense safety precautions is also important.

b. Control of Hazards. The potential hazards of exposure to rustproofing compounds can be controlled in two ways: through proper medical/sanitation controls and through use of adequate facilities.

c. Medical/Sanitation Controls. Units with active rust prevention/rustproofing programs should implement a medical/sanitation control program through education of personnel, mandatory use of proper protection devices, and by an emphasis on personal hygiene.

(1) Education. All users within units should be fully informed of the potential harmful nature of rustproofing material. Good common sense must be used in the handling and the application of rustproofing material.

(2) Equipment Use/Safety Practices. Masks should only be relied upon when it is impossible to ensure adequate ventilation. Reliance on masks alone is only permissible when the exposure is short (only a few minutes) and infrequent (no more than 10–20 times daily). Eye protection is mandatory during all cleaning, drilling, and rustproofing operations.

(3) Personal Hygiene. Proper washing facilities, including hot water and mild cleaners, should be readily available to the rustproofer. Clean work clothes should be worn daily and insisted upon by supervisors for the safety of the rustproofer.

d. Facilities. Units with rust prevention/rustproofing programs should provide adequate facilities which include adequate ventilation of the work area (intake and exhaust) as well as enclosures to confine spray to the specific work area as much as possible (see paragraph 3-2).

1-16. CARC Paints/Rustproofing Policy.

a. Paints now in use within the U.S. Army are called Chemical Agent Resistant Coatings (CARC). This is an aliphatic polyurethane organic film, a paint that cures to form a film so hard that it cannot be contaminated by chemical agents. The Army’s tactical purpose for using CARC paints is to allow for a quick wash-off of contaminants in the event of an NBC attack.

b. There isn’t a paint manufactured today, CARC included, that cannot be permeated or penetrated by water. This water will eventually cause the paint and its primer to crack, thereby exposing the under surface, bare metal, to still greater amounts of moisture. Water on a bare metal surface is the primary cause of corrosion. Rusting beneath the paint will result.

c. CARC paints are hard enough to forestall rust and to slow down its progress so that it can be repaired before any significant damage is done. However, CARC paints alone are not sufficient to stop corrosion on, beneath, or inside vehicles. If the service life of these vehicles is to be extended, greater protection in the form of rustproofing material must be provided, especially on the vehicle’s undersides and its closed-in areas.

d. Rustproofing materials in use today are not chemical agent resistant. This means that the rustproofing material itself will become contaminated in the event the vehicle is exposed to an NBC attack. The use of CARC paints in rustproofed areas of a vehicle is incompatible with rustproofing policies. Given the current technology, this incompatibility cannot be avoided. The Army is in need of vehicles that will resist chemical agents, and fleets that will last through the years. To meet these needs, units must respond to both requirements and be prepared to wash off the contaminated rustproofing material with high pressure washers. The rustproofing material, of course, must be reapplied as soon as the situation permits. The exceptional circumstances of an NBC attack fully justify this approach as a working plan until such time as CARC-compatible rustproofing materials are developed and can be made available to units. Such materials are currently being researched by technicians.

e. One final matter regarding CARC paints and rustproofing policy is the difference between the Army’s approach toward corrosion prevention and the approach taken by commercial firms. The maintenance approach used by the Army is as follows:

(1) The vehicle, or area of the vehicle to be rustproofed, must first be cleaned of all rust, dirt, oils, and chemical films.
(2) The cleaned metal is then primed and painted in accordance with TM 43-0139, Painting Instructions for Field Use and TB 43-0209, Color, Marking, and Camouflage Painting of Military Vehicles, Construction Equipment and Materials Handling Equipment, as appropriate. Painting here includes exterior surfaces as well as all accessible under surfaces such as the underbodies of dump trucks. Painting requirements do not include inaccessible areas such as boxed-in areas.

(3) Vehicles must be rustproofed as quickly as is practical after cleaning. Chapters 4 through 22 of this technical bulletin provide vehicle-specific rustproofing instructions.

f. The above procedures describe the Army’s recommended approach to corrosion prevention. This differs from most commercial firms only with regard to painting. Commercial firms do not apply paint to readily accessible areas on the undersides of the vehicle. Rather, these areas are cleaned and immediately rustproofed. Army practices, however, are geared toward extending the service life of its vehicles for twenty years or more. The paint is desired in order to provide an additional barrier between the bare metal and outside moisture, chemical films, and other corrosives.

1-17. Unit SOPs/Manhour Requirements.

a. This technical bulletin provides commanders with details of all policies, procedures, and resources available in order to implement an effective Corrosion Preventive and Control Program.

b. Specifics as they apply to the facilities and manpower resources of individual units cannot be properly addressed in this technical bulletin. Considerations of unit size, its personnel allowances, equipment allowances, location, facilities, mission, and local restrictions, if any, must become factors in the development of the unit’s Standard Operating Procedures (SOP) for CPC. Each unit commander, therefore, is required to develop such an SOP and see that it is properly implemented. Manhour standards based upon the particular operation and resources of the unit should also be developed.
CHAPTER 2
CORROSION PREVENTION AND CONTROL

Section I. RUSTING – THE ELECTROCHEMICAL REACTION

2-1. What is Rust?

a. The flaky metal deposit known as rust is, in fact, metal returning to a more natural state. Metals such as iron or steel are not natural elements found in the earth’s crust. Rather, they are man-made by-products resulting from the melting of ore in high temperature furnaces. This melting separates the iron particles from the ore. Once separated, the iron particles flow directly from the furnace into molds that shape them. The cooling and hardening of the iron begins immediately. What we call “steel” is produced in the same manner. Steel is iron mixed with other molten alloys during the furnace refining process.

b. The process described above requires the use of a large amount of energy in order to separate the iron particles from their ore and shape the molten metal into the desired form. As a result, these metals are in a high energy state after cooling (like a tightly wound spring forever straining to unwind), and would naturally like to return to a low energy state. This straining to return to a low energy state is the driving force behind corrosion. Rusting, therefore, is nature’s way of returning metals to their natural state.

c. Rust is iron hydroxide. It is iron transformed by a natural process. This process is caused by the attraction of negatively charged electrons in the atoms of iron toward oxygen in water. Corrosion prevention technicians today refer to this natural process as the “Oxidation-Reduction Reaction” (see Figure 2-1).

d. The “Oxidation-Reduction Reaction” begins with water on a metal surface as a result of exposure of the metal to rain, snow, dew, or humidity. This moisture forms a film on the metal. Beneath this film is the metal itself which, as noted above, is a formed, man-made construction of earth minerals that have been stressed into a shape that better suits mankind’s needs. That which was once an aggregate of iron ore in the earth’s crust has now been molted from its ore and molded into a fender, stake pocket, or cargo bed.

e. The smelting process that makes iron is imperfect and the resultant metal itself always contains impurities, some areas of the metal more so than others. In the presence of a moisture film, which serves as a conductor, iron atoms in the purer areas of the metal create a positive electric pole while iron atoms in adjacent areas with more impurities become the opposite pole, a negative area. The result is similar to a simple electric battery with moisture serving as the electrolyte, and the stronger-weaker iron atoms becoming the positive and negative terminals of the circuit.

f. In the rusting process, iron atoms in the weaker, negative areas will split apart. These atoms give up or give off some of their electrons, which are subatomic particles found in all atoms. These lost electrons migrate through the metal toward the positive area. As a result of this loss, electron deficient iron atoms in the negative area gravitate toward the metal surface and dissolve in the film of moisture. This half of the “Oxidation-Reduction Reaction”, or rusting process, is referred to as the “oxidation half”. This half weakens the metal in all negative areas, but it does not cause rust. In order for actual rust to form, the second half of the “oxidation-reduction reaction” must complete the cycle.

g. The “reduction half” of the rusting process returns to the lost electrons migrating through the metal toward the positive area. These free electrons are picked up by oxygen atoms in the water film on the surface of the metal. On this surface, the products of the two reactions then combine to from a flaky, crusty third substance called iron hydroxide or rust. Stated another way, the dissolved electron deficient iron atoms that gravitated to the wet surface during the oxidation half of the process have now combined with electron charged oxygen atoms produced by the reduction half of the process. The result of all this is a transformation of iron atoms into iron hydroxide or rust.

h. The rusting process described above actually begins the moment moisture comes into contact with bare metal. This process is actually occurring at the atomic level; the results are not instantly apparent. While salt and dirt particles added to the moisture will accelerate the process, it still takes weeks, months, or years (depending upon the thickness of the metal) for the process to transform the iron or steel to an unserviceable state.
OXIDATION-REDUCTION REACTION

The corrosion process called “rusting”

It begins with moisture on metal. This moisture polarizes the iron atoms in the metal. Purer portions of the iron become positive areas. Those parts of the metal containing more impurities become negative areas.

The positive charged iron atoms begin to attract electrons from the weaker negatively charged iron atoms. These electrons are pulled from the negative iron atoms and migrate toward the positive areas.

At the same time, the weakened iron atoms in negative areas of the metal migrate toward the surface of the metal where they begin to dissolve into the moisture on the surface.

The electrons pulled into the positive areas of the metal now come into contact with the oxygen atoms found in the moisture on the metal surface. These oxygen atoms seize upon the electrons. In turn, the electron charged oxygen atoms now merge with the weakened iron atoms dissolving on the surface. This merging forms a new molecule - the molecule of iron-hydroxide, a crusty, flaky form of metal commonly known as rust.

Figure 2-1. Oxidation-Reduction Reaction.
2-2. The Four Elements of Rusting.

a. Rusting of iron, steel, or any metal alloy is caused by the electrochemical reaction described in paragraph 2-1. This reaction is divided into four parts or elements:

(1) A positive reaction.
(2) A negative reaction.
(3) A path for negative particles to flow.
(4) A path for positive particles to flow.

b. In the explanation of the rusting process, the positive and negative polarization of the iron atoms constitute the first two elements. A path for positive and negative particles to flow is described in the “oxidation half” of the “Oxidation-Reduction Reaction.” If any of these elements are interrupted, the circuit is broken and no rusting will occur.

c. The best means of breaking the rusting circuit is to bond a nonmetallic substance to the metal as a barrier between the metal and the environment. To some degree, paint accomplishes such a barrier. On well maintained exterior surfaces, paint will go a long way toward forestalling rust. But nothing can stop rusting altogether. Eventually, moisture will work its way to the metal even beneath rustproofing material.

d. With a greater awareness of rust, the rusting process, the stages of rust, and rustproofing procedures, the damage of this form of corrosion can be minimized within the Army to the point of zero impact upon the service life of any Army vehicle.

2-3. The Four Stages of Rust.

a. Rust has been categorized into four distinct stages. These stages of deterioration have been standardized within the Army in order to communicate the condition of the metal. The four stages apply to painted metal surfaces:

(1) Stage 1 Rust (see Figure 2-2). The painted surface is bubbly or the paint bubbles have broken to reveal rusty red, black, or white corrosion deposits on the metal surface. This may be accompanied by minor etching or pitting of the metal. In Stage 1 rust, no scale is present but the metal may have loose, powdery, or granular deposits on the surface. Base metal is sound.

NOTE

One key to the Corrosion Prevention and Control Program is an update of all vehicle semiannual Preventive Maintenance Checks and Services (PMCS) to emphasize early detection and repair of rust damaged areas before the condition is allowed to advance beyond Stage 2 rust.

(2) Stage 2 Rust (see Figure 2-3). Powdered, granular, or scaled condition exists on the surface metal. Rusty red, black, or white corrosion deposits are present. Metal surface may be etched or pitted. Metal beneath the corroded area is still sound.
(3) **Stage 3 Rust** (see Figure 2-4). Surface conditions and corrosion deposits present are similar to Stage 2 except that metal in corroded area is unsound, and small pin holes may be present.

![Figure 2-4. Stage 3 Rust.]

(4) **Stage 4 Rust** (see Figure 2-5). Corrosion has advanced to the point where the metal has been penetrated throughout. No metal remains at the point of severest corrosion. There are holes in the surface area or metal is completely missing along the edges.

![Figure 2-5. Stage 4 Rust.]

2-4. **Arresting Rust/Repairing Rust Damage.**

a. Stage 1 and Stage 2 rust can be readily repaired. With Stage 3 rust, the metal is unbound and must be cleared of rust and then reinforced, or the affected part must be replaced entirely. Areas showing Stage 4 rust are not repairable. Such parts must be replaced.

b. Rust in Stages 1 and 2 can be removed by use of an abrasive such as a sander, grinder, or wire brush, and/or by application of a rust removing compound. The best approach taken to remove rust depends greatly on the area being repaired as well as by such considerations as metal thickness or accessibility of the rusted area. A metal grinder, for example, would be incorrect for use on thin, short metal. Interior rust in long boxed-in areas close to rubber molding (such as the tube rails of a fold-down window) may require use of a wipe-off rust remover and swab as opposed to a wash-off rust remover. Common sense and an understanding of the tools and materials available must determine the best approach.

c. Whenever rust is located on a vehicle that cannot be immediately repaired, the rust area should at least be treated with rust arresting coating, MIL-R-10036, to prevent further corrosion. Refer to paragraph 2-20 for a description of this material, its application, and hazards.

d. Most Stage 1 and Stage 2 rust is localized and can be easily removed. Larger areas may require use of high pressure washers. If repair is to be done immediately, application of the rust arresting coating (MIL-R-10036) is not necessary. Sand, grind, brush, and/or chemically remove the rust from the metal. Maintenance personnel should be aware of all chemical materials available to assist in removing rust as well as any oils or chemicals on the metal. Paragraphs 2-19 through 2-28 provide a list of these materials.

e. Stage 2 and Stage 3 rust are very similar in appearance. What qualifies rust as Stage 3 depends to a great degree upon the thickness of the metal. Rust could appear as more advanced on the heavy-gaged metal of a cargo or dump body and yet be categorized as Stage 2. What may appear as minor rust on sheet metal may be Stage 3. The difference is in the soundness of the metal. Inspectors looking at the first example of the cargo or dump body may determine by probing and sounding that the metal beneath the rust is still sound. Such rust would be classified as Stage 2. These same inspectors may determine that the less visible rust on the sheet metal has made that metal unbound or unserviceable. The sheet metal rust, therefore, would be categorized as Stage 3.

f. Stage 3 and Stage 4 rust make the rusted part unserviceable. Repairing rust damage in such cases
requires replacement of the affected metal area. In some instances, such as in the M151 series 1/4-Ton trucks, rust repair kits are available. For the most part, however, maintenance personnel should refer to the vehicle-specific TM for replacement parts.

g. Stage 3 and Stage 4 rusted metal parts classified as unserviceable should be removed. Adjacent areas should be thoroughly cleaned of any rust, oils, or chemicals before replacement parts are installed.

NOTE

Army policy requires that all accessible under surfaces to be rustproofed must also be cleaned, primed, and painted. This additional barrier of paint will provide greater protection to the metal.

h. Once the metal has been thoroughly cleaned, exterior surfaces must be primed and painted (see TM 43-0139). All accessible under surfaces such as the underbodies of cargo and dump trucks should also be primed, painted, and allowed to dry before applying rustproofing material. Surfaces that are not readily accessible for painting, such as boxed-in areas, are rustproofed only.

i. After the affected surface has been prepared, refer to the vehicle-specific chapters of this technical bulletin for final rustproofing instructions (see Chapters 4 through 22).

2-5. Rust-Prone Areas.

a. This technical bulletin provides specific rustproofing instructions for most tactical vehicles as well as several commonly used trailers (see Tables 1–1 and 1-2). Application of rustproofing instructions can be applied to all vehicles. To assist in adapting such instructions, this paragraph provides a list of rust-prone areas that are found in the design of most vehicles. Users are encouraged to recognize such areas and understand why such areas are prone to rust. Finally, users are encouraged to apply the principles of rustproofing to all vehicles and trailers using this technical bulletin as a guide. The following are likely areas for rust development:

(1) Channels (see Figure 2-6). A channel is an open-ended design. It may be square or C-shaped, such as the rubrail support members of cargo and dump truck sides and tailgates, or an inverted U-shape found in the understructure of M191 series trucks. The distinguishing design characteristic of a channel is that it is open-ended. Insides of all channels should be cleaned, treated and rustproofed. Exterior sides are cleaned, treated, primed and painted.

Figure 2-6. Channels.

(2) Rubrails (see Figure 2-7). Rubrails are channels serving as both support members and as structural protection for the vehicle body. The horizontal crossmember trimming the tops of all cargo sides and tailgates are rubrails.

(3) Stiffeners (see Figure 2-7). Stiffeners are boxed-in or solid support members found in the tailgates of all cargo trucks. Stiffeners strengthen the component to which they are attached. Solid stiffeners as found on most 2 1/2-Ton cargo trucks present little difficulty regarding rust. Boxed-in stiffeners found on all 5-Ton trucks, however, are prone to trap moisture.

(4) Pockets (see Figure 2-8). Pockets are tube-like designs such as the stake pockets used to install the troop seat and side racks of cargo trucks. Pocket designs are typically fully open at the top of the tube. The bottom of the tube most often has a means of drainage from the tube. This is not always true or adequate, which makes pocket designs very vulnerable to rust as a result of trapped moisture.

(5) Tube Rails (see Figure 2-9). Tube rails such as window frames of fold-down type windows or the pillars of stationary windows are especially rust-prone due to the boxed-in design and the thin gauge metal most often used in their construction.
Figure 2-7. Rubrails and Stiffeners.

Figure 2-8. Pockets.

Figure 2-9. Tube Rails.
(6) Sills (see Figure 2-10). Sills are horizontal panels beneath cab doors or along window frames of some vehicles. The horizontal framework beneath cargo and dump bodies are also sills. Sills may be boxed-in areas or open-ended horizontal frameworks. All sills are horizontal designs intended to bear the upright portions of the vehicle’s frame. Corrosion protection of sill areas is essential.

(7) Seams (see Figure 2-11). Seams are areas on the vehicle where separate pieces of metal come together. This is true whether the metals are welded together or simply in contact with one another. Aside from seams working as areas where moisture collects, the differing metals will tend to contain greater variations of impurities with respect to one another than those found in a single casting. This greater variation of impurities works to accelerate the metal polarizations and the resultant rusting process.

b. Sections in this TB on rust-prone areas, general preparation procedures, and all basic information on corrosion prevention equipment and materials may also be applied to nearly all vehicle rustproofing requirements. The additional objective of this TB, however, does require good judgement and common sense on the part of rustprooers. This is especially true with regard to drilling of access holes on heavy load-bearing areas of a vehicle. In such instances, comparable configurations within the vehicle-specific chapters of this TB provide the best guidance.

2-6. Preventive Maintenance for Rust-Prone Areas.

a. With regard to the entire vehicle, but especially rust-prone areas, several steps have been developed to aid in rust prevention:

(1) Operators should wash their equipment daily with fresh water when operating in areas where salt is used to melt snow, or in areas where there is a high salt concentration in the air.

(2) Fiber or rubber floor mats should be permanently removed from all tactical vehicles to prevent water from being trapped under mats. Such trapped water will cause floor pans to rust. All mats should be removed and floorboards should be cleaned, repaired if needed, and sprayed with nonslip flight deck covering compound, NSN 5610-00-782-5556.

(3) Drain holes, including drilled holes on the underside of vehicles, should be kept clean and open to prevent moisture accumulation.

(4) In areas with high salt concentration in the air, canvas covers should be placed on static vehicles in motor pools to reduce the amount of rain and mist entering crew and cargo compartments.

(5) Vehicles should be parked under shelter whenever available.
Vehicles and trailers treated with rustproofing materials should not be steam cleaned or cleaned with solvent. Such cleaning may damage or dissolve the protective rustproofing materials.

When rust is found on equipment, the rusted area should be promptly treated to prevent further corrosion. Sand or grind the rusted area until rust is removed from the metal. Then treat metal with any of the metal conditioners and/or rust removers described in paragraphs 2-19 through 2-28 of this TB, if the surface will not be either painted or rustproofed immediately after cleaning. Spray cleaned metal with primer and CARC paints and/or rustproof cleaned metal, as appropriate.

If possible, park trailers on a slope to allow drainage of water from the trailer. If operating a dump truck, tilt the dump bed before vehicle shutdown to allow drainage of excess water.

Vehicles with areas of Stage 1 or Stage 2 rust should be cleaned of all existing rust. The cleaned area should also be treated immediately with any of the metal conditioners and/or rust removers described in paragraphs 2-19 through 2-28 of this TB. External surface areas should then be primed and painted.

b. The following is a list of common misunderstandings regarding rustproofing materials, applications, and techniques:

1. “Rustproofing” and “undercoating” are not the same. Rustproofing is the application of a rust-resistant and rust preventive material. This material is not undercoating. Undercoating is a tar-like, sound-deadening material usually sprayed on the underside of a vehicle at time of manufacture. The word also applies to the action of applying the tar-like material itself. Undercoating is sometimes used to refer to the application of primer paints on metal bodies prior to painting the final coat. In neither instance is undercoating to be confused with rustproofing or rustproofing materials.

2. Rustproofing is not permanent. The material can be lost or destroyed. Tactical vehicles and trailers treated with rustproofing materials should not be steam cleaned or cleaned with solvents. Such cleaning may damage or dissolve the protective rustproofing materials.

3. Rustproofing should never be applied over undercoating. In such instances, the material will be lost as the undercoating flakes and falls from the underside of the vehicle.

4. Army policy requires that all accessible undersurfaces to be rustproofed must be cleaned, primed, and painted. This policy differs from commercial practices. However, the additional barrier of paint will provide greater protection to the metal.

Section II. OTHER TYPES OF CORROSION

2-7. General.

a. Rust accounts for the majority of corrosion damage on U.S. Army vehicles, but other types of corrosion also limit the useful service life of equipment. Notable among these additional types of corrosion are galvanic corrosion, pitting, poultice, and the effect of the sun and ozone. These and other types of corrosion are discussed in this section.

b. Two additional types of destructive factors are mildew and acid rain. While neither can be defined as forms of corrosion, they both contribute to corrosion. Both are destructive to Army equipment and, therefore, fall within the objectives of the CPC Program. A better understanding of the causes and prevention of these factors will also assist in accomplishing the overall goal of this technical bulletin.

a. Whenever two different metals come in contact with each other, a potential exists for the corrosive destruction of the atomically weaker of the two metals. The further away these two metals are in terms of their atomic structure, the greater their potential for galvanic corrosion. Table 2-1 provides a list of common metal and metal alloys. In this table, carbon is the hardest of metals and magnesium alloys are atomically the weakest. The closer the different metals are to one another in this table, the less is the potential for galvanic corrosion. The actual galvanic corrosive process is similar to rusting to the degree that weaker metals become negative areas and lose electrons to the stronger positive atoms of the other metal.

b. The element carbon is included in the galvanic table of metals because this element is used to
strengthen some metal and is an agent in some lubricants. At the same time, carbon is highly cathodic to all metal alloys and is extremely corrosive when in contact with high potential end alloys as shown in Table 2-1.

c. Galvanic corrosion is sometimes desirable as in the case of galvanized steel. This is steel with a zinc coating. The zinc coating protects the steel by serving as a barrier between the shell and the corrosive world. The zinc coating also serves as a sacrificial metal due to the galvanic process whereby the natural corrosion process concentrates on the weaker zinc to the benefit of the steel. Maintenance technicians must keep galvanic corrosion in mind whenever replacing nuts, bolts, metal screws, clamps, etc. These bin items should always approximate the metals they will come in contact with on the vehicle.

2-9. Ozone and Ultraviolet Radiation.

a. Ozone is a blue, gaseous form of oxygen formed naturally in our atmosphere by the effects of lighting and/or by normal oxygen’s exposure to ultraviolet radiation from the sun. From the high atmosphere where it is concentrated, the ozone falls to earth. Ozone is the primary enemy of tires and other rubber products. It destroys the two most important properties of rubber, its strength and elasticity. Ozone exposure dries out rubber so that it becomes brittle and easily worn through. Ozone oxygen atoms exist in greater quantities on hot, desert-like surfaces of the earth where their effects on tires, rubber seals, and other automotive products are most pronounced. Most Army tires and other rubber products are manufactured with ozone preservatives, but these qualities are lost with time and exposure. Commercial preservatives such as Armor All or Agemaster can be applied as required.

b. Ultraviolet radiation is a corrosive agent. Ultraviolet radiation is everywhere in the rays of the sun. Aside from contributing to the formation of ozone, ultraviolet radiation breaks down paints and resins. It also breaks down the polymer bonds or chemical structures of rubbers and plastics. With prolonged exposure to direct sunlight, these materials will lose their strength, dry out, and crack. If prolonged exposure to ultraviolet radiation cannot be avoided, provide a preventive maintenance watch on all such products and periodic replacement, as necessary. Rubber products may be protected using commercial preservatives. Shelter should also be used whenever possible to forestall the effects of ultraviolet radiation.

a. Pitting occurs most commonly on aluminum and stainless steel products. It is a form of localized corrosion in which small areas of the metal corrode preferentially to the adjacent areas. This type of corrosion causes cavities or pits in the metal surface.

b. The cause of pitting corrosion is salt, either introduced through sea water or on the highway in winter months. To avoid pitting, clean the vehicle after exposure to salt as soon as is practical.

2-11. The Differential Aeration Effect.

a. Air carries moisture but also dries moisture from the surface of metals. Whenever the design of the vehicles is such that moisture can become trapped, while areas immediately surrounding the trapped moisture are ventilated and, therefore, quickly dried, the difference between the two metal areas (one dry/one moist) will set up an electrochemical cell. The result will be an intense acceleration of the rusting process and an intense, localized corrosion. This dynamic is called the “differential aeration effect” which can be translated into the phrase “result of differing ventilation”.

b. Crevice corrosion in rocker panels is the most commonly cited example of the differential aeration effect. This dynamic is also responsible for poultece corrosion (see paragraph 2-12).

2-12. Poultice Corrosion.

Poultice corrosion is rust which occurs when deposits of mud or other debris hold stagnant moisture in contact with a metal surface. Because the mud or debris is moisture-laden, this condition accelerates the rusting process. As with pitting corrosion, the solution is to keep the vehicle as clean as possible at all times.

Crevice corrosion is caused by a design problem that manufacturers are being asked to keep in mind during the planning of new vehicles. Crevice corrosion is intense accelerated rusting in joints and recesses. It is caused by the differential aeration effect outlined above. The solution for crevice corrosion is rustproofing of the joint or recess.
Table 2-1. The Galvanic Corrosion Potentials of Different Metals.

<table>
<thead>
<tr>
<th>High Potential End</th>
<th>Low Potential End</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnesium Alloys</td>
<td>Carbon</td>
</tr>
<tr>
<td>Beryllium</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td></td>
</tr>
<tr>
<td>Galvanized Steel</td>
<td></td>
</tr>
<tr>
<td>Aluminum Alloys</td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td></td>
</tr>
<tr>
<td>Gallium</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td></td>
</tr>
<tr>
<td>Mild Steel</td>
<td></td>
</tr>
<tr>
<td>Wrought Iron</td>
<td></td>
</tr>
<tr>
<td>Iridium</td>
<td></td>
</tr>
<tr>
<td>Aluminum Alloys</td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td></td>
</tr>
<tr>
<td>Gallium</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td></td>
</tr>
<tr>
<td>Mild Steel</td>
<td></td>
</tr>
<tr>
<td>Wrought Iron</td>
<td></td>
</tr>
<tr>
<td>Iridium</td>
<td></td>
</tr>
<tr>
<td>Low-Alloy Steels</td>
<td></td>
</tr>
<tr>
<td>Cast Iron</td>
<td></td>
</tr>
<tr>
<td>Low-Alloy Cast Iron</td>
<td></td>
</tr>
<tr>
<td>4-6% Cr Steel</td>
<td></td>
</tr>
<tr>
<td>Ni Cast Iron</td>
<td></td>
</tr>
<tr>
<td>12-14% Chromium Steel and 25-30% Lead-Tin Solders</td>
<td></td>
</tr>
<tr>
<td>16-18% Chromium Steel</td>
<td>Austenitic Cr-Ni Stainless Steel</td>
</tr>
<tr>
<td>Austenitic Cr-Ni Stainless Steel</td>
<td>Lead</td>
</tr>
<tr>
<td>Lead</td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td></td>
</tr>
<tr>
<td>Manganese Bronze</td>
<td></td>
</tr>
<tr>
<td>Naval Brass</td>
<td></td>
</tr>
<tr>
<td>Cobalt</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td></td>
</tr>
<tr>
<td>inconel (13% Cr 6.5% Fe, Bal. Ni)</td>
<td></td>
</tr>
<tr>
<td>Yellow Brass</td>
<td></td>
</tr>
<tr>
<td>Admiralty Brass</td>
<td></td>
</tr>
<tr>
<td>Aluminum Bronze</td>
<td></td>
</tr>
<tr>
<td>Red Brass</td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td></td>
</tr>
<tr>
<td>Silicon Bronze</td>
<td></td>
</tr>
<tr>
<td>Nickel Silver</td>
<td></td>
</tr>
<tr>
<td>70-30 Copper Nickel</td>
<td></td>
</tr>
<tr>
<td>Titanium</td>
<td></td>
</tr>
<tr>
<td>Monel</td>
<td></td>
</tr>
<tr>
<td>Composition G Bronze (88% Cu, 2% Zn, 10% Sn)</td>
<td></td>
</tr>
<tr>
<td>Composition M Bronze (88% Cu, 3% Zn, 6.5% Sn, 1.5% Pb)</td>
<td></td>
</tr>
<tr>
<td>Silver Solder</td>
<td></td>
</tr>
<tr>
<td>Nickel (Passive)</td>
<td></td>
</tr>
<tr>
<td>70-30 Nickel Copper</td>
<td></td>
</tr>
<tr>
<td>Stainless Steels (Passive)</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td></td>
</tr>
<tr>
<td>Palladium</td>
<td></td>
</tr>
<tr>
<td>Gold</td>
<td></td>
</tr>
<tr>
<td>Rhodium</td>
<td></td>
</tr>
<tr>
<td>Platinum</td>
<td></td>
</tr>
<tr>
<td>Carbon</td>
<td></td>
</tr>
</tbody>
</table>

Almost all rusting is a form of stress corrosion because man-made iron or steel is a stressed by-product of natural ores. Stress corrosion is most often associated with metals or rubbers under even greater stress due to the design application. Steel forced by loads into a bend is an example. If such steel is exposed further to rusting, it becomes structurally weaker. The result is a raising of the level of stress placed on the metal; the greater the stress, the more the corrosion acts upon the metal. In heavy metals such as steel, the effects of stress corrosion are one of the causes of metal fatigue. In other applications, stress corrosion will cause cracking along with an increase of stress and accelerated corrosion.

2-15. Fretting Corrosion.

This is a form of stress corrosion. It is caused by friction of the metal against other surfaces during transportation and handling, especially if the metal product is not well secured, thereby causing shifting during movement. The resultant friction may wear away at the metal’s protective film. In the presence of moisture, it will also accelerate the corrosion process. The result will be pitting or stress corrosion induced cracks.

Although mildew is not strictly corrosion, it does contribute to corrosion in metals and is very destructive to other Army products. Mildew is a gradual deterioration of organic material such as canvas or tarpaulin caused by the growth of fungus on or in the material. This growth occurs if the canvas or tarpaulin is left damp and unattended or left for prolonged periods in a damp shelter. Canvas is a heavy, coarse, and closely woven fabric of cotton, kemp, or flax. Tarp or tarpaulin is coarse linen. Both of these fabrics are organic materials and, as such, keeping them clean and allowing them to air out will prevent the formation of mildew.

2-17. Acid Rain.

a. Acid rain is commonly understood as the bombardment of the earth by chemical wastes from industry. It is viewed as a major problem in heavily populated and industrial areas. Wherever there are oil burning furnaces or chemical mills in use, there will be emissions which are felt to be the cause of acid rain. Acid rain is chiefly composed of dimethyl sulfide and hydrogen sulfide. The chemicals attack painted metal surfaces causing pitting and cracks. This is not a major corrosion factor, however, since scheduled cleaning of the affected vehicle will nullify the effects of the chemicals.

b. Acid rain is also caused by marshy areas such as swamps or bogs which naturally produce dimethyl sulfide and hydrogen sulfide through the decaying of matter. Again, the solution is to keep vehicles as clean as possible at all times.

Corrosion can occur when metal comes in contact with various substances. This contact may occur during the repair, testing, or shipment of a vehicle. Tables 2-2 and 2-3 list corrosive solvents and their effect on metallic surfaces.

<table>
<thead>
<tr>
<th>Type of Fluid</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine Fuel</td>
<td>Softening or swelling of some polymers.</td>
</tr>
<tr>
<td>Turbine Oil</td>
<td>Attack on neoprene and natural rubber.</td>
</tr>
<tr>
<td>Dielectric Coolant</td>
<td>Attack on organic seals.</td>
</tr>
<tr>
<td>Anti-icing Fluids</td>
<td>Increased condensation and attack on electrical wiring.</td>
</tr>
<tr>
<td>Aqueous Contaminants (Free Water, Urine, Condensation Desiccants)</td>
<td>Increased condensation causing “pooling” of fluid in bathtub areas. Corrosive attack of unprotected bimetallic couples. Introduction of insulative films on electrical connector contact surfaces.</td>
</tr>
<tr>
<td>Maintenance Fluids</td>
<td>Softening and/or reduced adhesion of some organic coatings.</td>
</tr>
</tbody>
</table>
Table 2-3. Corrosive Damage Potential During Tests, Service, or Storage.

<table>
<thead>
<tr>
<th>Environment</th>
<th>Produced By</th>
<th>During</th>
<th>Attacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrosive Liquids</td>
<td>Improper Cleaning Methods</td>
<td>Fabrication or Repair</td>
<td>Insulation, Components</td>
</tr>
<tr>
<td>Oil or Grease</td>
<td>Leakage</td>
<td>Storage or Rework</td>
<td>Cadmium, Paint</td>
</tr>
<tr>
<td>Pools of Water</td>
<td>Sump Areas (Poor Design)</td>
<td>Storage or Service</td>
<td>Everything</td>
</tr>
<tr>
<td>Diester Oils</td>
<td>Lubricants</td>
<td>Storage</td>
<td>Neoprenes, Plastics, Paint</td>
</tr>
<tr>
<td>Electrolyte (Corrosive)</td>
<td>Seal Leakage of Electrolytic Capacitors</td>
<td>Service</td>
<td>Circuit Components</td>
</tr>
<tr>
<td>High Temperature</td>
<td>Exothermic Cure of Encapsulant</td>
<td>Fabrication or Repair</td>
<td>Insulation, Components</td>
</tr>
<tr>
<td>High Temperature</td>
<td>Curing Oven</td>
<td>Fabrication or Repair</td>
<td>Insulation Components</td>
</tr>
<tr>
<td>High Temperature</td>
<td>Lack of Cooling or Short</td>
<td>Test or Service</td>
<td>Insulation, Components</td>
</tr>
<tr>
<td>Acid Residues</td>
<td>Incomplete Cleaning</td>
<td>Fabrication or Repair</td>
<td>Metals, Nonmetals</td>
</tr>
<tr>
<td>Ambient Atmosphere</td>
<td>Insufficient Packaging</td>
<td>Fabrication or Storage</td>
<td>Conductor Surfaces</td>
</tr>
<tr>
<td>Corrosive Gases</td>
<td>Sulfur in Paper</td>
<td>Fabrication or Storage</td>
<td>Silver</td>
</tr>
<tr>
<td>Corrosive Gases</td>
<td>Undercured Organics (Coatings)</td>
<td>Storage</td>
<td>Metals, Plastics</td>
</tr>
<tr>
<td>Corrosive Gases</td>
<td>Packing Materials</td>
<td>Storage</td>
<td>Cadmium, Other Metals</td>
</tr>
<tr>
<td>Corrosive Gases, Acid</td>
<td>Overheated Insulation</td>
<td>Test or Service</td>
<td>Metals</td>
</tr>
<tr>
<td>Corrosive Gases, Acid</td>
<td>Wood (Oak, Chestnut, Cedar)</td>
<td>Storage or Shipping</td>
<td>Metals</td>
</tr>
<tr>
<td>Corrosive Gases, Acid</td>
<td>Adhesives, Heat Sealing of Plastic Bags</td>
<td>Test or Service</td>
<td>Metals</td>
</tr>
<tr>
<td>Corrosive Gases, Ammonia</td>
<td>Propellant</td>
<td>Test or Service</td>
<td>Plastics, Copper</td>
</tr>
</tbody>
</table>

Section III. CORROSION REMOVING COMPOUNDS

a. TM 9-247, Materials Used For Cleaning, Preserving, Abrading and Cementing Ordinance Materiel and Related Items Including Chemicals, provides a list of commonly used chemicals for the maintenance of Army equipment.
Those materials that most closely relate to the Corrosion Prevention and Control Program are provided below.

a. This is a clear liquid composed of drying and semi-drying oils and driers. This compound is diluted with a petroleum solvent to a brush or spray consistency.

b. The compound will set to touch in three hours and dry to a hard film in 24 hours. It is used on rusted metal and painted surfaces to arrest further corrosion.

a. This compound is a liquid solvent containing an emulsifying agent or agents. It is used to remove oils, greases, asphalts, tars, and preservative compounds from metallic and painted surfaces. It will not remove wax-type rust preventive compounds.

b. The solvent is used full strength and is applied by brush, swab, soak, or spray followed by rinsing with a jet of steam or water. If water must be avoided, rinse with dry cleaning solvent (P-S-661).

WARNING

Due to the large quantity of caustic soda (lye), do not add large amounts of the compound to the water at one time, since the reaction may generate enough heat to cause an eruption. Protective clothing and glasses should be worn when using or making this solution. In case of contact with skin or eyes, flush immediately and thoroughly with water for at least 20 minutes. Get medical attention.

a. This compound is a dry powder or fine granular material, or both, in combination with flake material. This compound is free from alkali metal cyanide.

b. It is used to remove rust and scale from iron and steel components such as engine blocks, cylinder heads, and miscellaneous engine parts. It can also be used to remove paint, heavy grease, oil, and phosphate coatings. This should be accomplished in a separate tank.

WARNING

Phosphine, (hydrogen phosphide), a colorless, poisonous gas, forms very readily when any mineral acid reacts with metals or alloys containing phosphorus. Adequate ventilation must be provided since this gas is a dangerous fire, explosive, and toxic hazard. This acid causes burns. Avoid breathing vapors. In case of contact with skin or eyes, flush immediately and thoroughly with water for at least 20 minutes. Get medical attention.

a. This is an acid-pickling compound composed of hydrochloric (muriatic) acid and an inhibiting material that limits the action of the acid on the base metal after the rust has been removed.

b. The compound as issued is ready for use. It is used to remove heavy rust deposits from ferrous metal parts such as bomb fins, engine blocks, and small arms materiel. This compound does not change the dimensions of the parts materially, if properly applied.

2-24. Corrosion Removing Compound: Metal Conditioner and Rust Remover, Phosphoric-Acid Type.

WARNING

This compound contains a strong acid. Care must be taken to prevent contact with skin or eyes. Protective clothing and glasses should be worn when making up or using the solution. In case of contact, flush skin and affected areas immediately and thoroughly with water for at least 20 minutes. Get medical attention.

a. This compound is a clear, homogeneous, uninhibited phosphoric acid solution containing a
wetting agent. This compound does not contain a grease solvent because it is a de-ruster for parts that have been precleaned.

b. This compound is used to remove rust from precleaned metal parts.

2-25. Corrosion Removing Compound: Metal Conditioner and Rust Remover, Wash-off Type (MIL-M-10578A, Type I).

WARNING

When diluting the compound, pour the compound into the water. Do not pour water into the compound. Phosphine, (hydrogen phosphide), a colorless, poisonous gas, forms very readily when any mineral acid reacts with metals or alloys containing phosphorus. Since this gas is a dangerous fire, explosive, and toxic hazard, adequate ventilation must be provided. The amount of phosphine released from the acid bath increases with an increase in temperature and concentration of acid. Compound contains a strong acid. Operators should wear protective clothing and glasses when making up or using this compound. If splashed on skin or eyes, flush immediately and thoroughly with water for at least 20 minutes. Get medical attention. Avoid prolonged breathing of vapors.

CAUTION

Do not use this compound on electrical wiring, coil steel springs, or other spring steels.

a. This compound is a concentrated, homogeneous, stable liquid, containing free orthophosphoric acid and water soluble, nontoxic, organic grease solvents.

b. This compound is used to remove rust and grease from ferrous metal surfaces, and provides a slight etching action for ferrous and nonferrous metals to promote the adhesion of paint or corrosive preventives.

This compound consists of red crystals that are soluble in water. It is used in the following applications:

a. As a component of low temperature bichromate finish solution for ferrous metals.

b. As a molten bath to produce black finish on corrosion resisting steel.

c. As a component of a chromate pickle solution used to clean traces of flux from magnesium alloy items after gas welding.

d. As a component of a chromate pickle bath for treating magnesium alloy sand mold, permanent mold, and die castings and wrought magnesium alloy parts to protect them against corrosion (see MIL-M-3171A).

e. As a component of a chrome pickle solution for treatment of magnesium alloy parts before painting (see MIL-M-3171A).

f. As a component of a galvanic anodizing solution that is used in Type IV treatment of magnesium alloy parts before painting (see MIL-M-3171A).

g. As a component of a neutralizing bath for treating magnesium alloy parts after Type V corrosion protective treatment and before painting.

2-27. Corrosion Removing Compound: Metal Conditioner and Rust Remover, Wipe-off Type (MIL-M-10578A, Type II).

WARNING

Pour the compound into the water. Do not pour the water into the compound. Phosphine, (hydrogen phosphide), a colorless, poisonous gas, forms very readily when any mineral acid reacts with metals or alloys containing phosphorus. Since this gas is a dangerous fire, explosive, and toxic hazard, adequate ventilation must be provided.

CAUTION

Do not apply this cleaner to electrical wiring, steel coil springs, or other spring steel. The treated surfaces must be painted or coated with corrosion preventive compound as soon as possible.

a. This compound is a dilute solution of orthophosphoric acid and water soluble, organic, nontoxic, grease solvents. The acid is in lesser proportion and the grease solvents in greater proportion than in the wash-off type.

b. It is used to remove light or medium grease and rust deposits from ferrous metals, or to condition ferrous, galvanized, brass, or aluminum surfaces for painting. The remaining film of gray-white iron phosphate conditions the surface for paint.

a. This is a cleaning agent in powder form consisting essentially of synthetic detergents. It is soluble in hard, soft, and salt water. It is free from objectionable odors, contains no abrasives or fatty-acid soaps, and is not irritating to the skin.

b. It is used to remove grease, oil, and occupational soil from painted surfaces, and in general soil removal. It is applied with brush, cloth, or sponge.
3-1. General.

a. Implementation of this technical bulletin by commanders of military installations is authorized when the environment dictates preventive control. Saltwater coastal areas, high humidity regions, and locations requiring snow removal by halite/sodium chloride (rock salt) are prime candidates for application of this TB.

b. Installations establishing a rustproofing program must develop a Standard Operating Procedure (SOP) based on specific needs, local requirements, and equipment manpower resources peculiar to the installation (see paragraph 1-17). The assigned Corrosion Prevention and Control Officer must become familiar with the shop requirements as well as the material and equipment available through normal supply channels, or through local/direct purchase from the manufacturer.

c. Due to the toxic hazards and flammability of rustproofing material, coordination in establishing a rustproofing program must be made with the installation’s Safety Officer or Logistics Officer. A training program emphasizing the hazards, shop safety practices, and first aid must also be established.

3-2. Minimum Shop Requirements.

A military rustproofing facility must comply with the following minimum requirements:

a. The shop must be equipped with a hoist of adequate capacity and with vehicle ramps.

b. The shop area should have ready access to compressed air and an electrical cable capable of 220-volt, three-phase capacity.

c. Vehicle wash areas must have a water supply of ten gallons of water per minute and adequate drainage for such volume.

d. Pallets, or similar ventilation platforms, must be provided in the work area for the drums of rustproofing compound to sit on. This is to prevent the transfer of cooler floor temperatures to the drum contents.

e. The work area must be well-ventilated and located away from flammable, explosive, or toxic material storage areas.

3-3. Parts/Materials Required.

a. Table 3-1 lists rustproofing compounds as well as their National Stock Numbers (NSN). These compounds are the only ones approved for application on U.S. Army fielded vehicles. Rustproofing compounds must be ordered by NSN through Federal Supply Service Bureau, 9001 Stateline Road, Kansas City, MO 64114.

b. Table 3-2 lists rustproofing equipment. Units must be familiar with the available equipment in order to determine which equipment best meets the peculiar needs of the unit. Requisitioning of this equipment will be accomplished through local or direct purchase from the manufacturer, except when an NSN is indicated.

Table 3-1. Rustproofing Compounds.

<table>
<thead>
<tr>
<th>NSN</th>
<th>Item</th>
<th>Suppliers</th>
<th>Supplier Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>8030-01-127-3684</td>
<td>Rustproofing Compound (16-gallon Drum)</td>
<td>Ashland Oil Co.</td>
<td>TECTYL517</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chrysler Corp.</td>
<td>CS2675</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lubrizol Corp.</td>
<td>785B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tuffkote Dinol Inc.</td>
<td>TK1010U</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wideger Chem. Corp.</td>
<td>WC 2220</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ziebart International</td>
<td>XLS-G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ford Motor Co.</td>
<td>WC 2240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Decar Chemical Co.</td>
<td>Dax Seal 7272</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jenkin–Guerin Inc.</td>
<td>Anchor Tuflex HP 785-B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quaker State Oil</td>
<td>Metal Gard 7000</td>
</tr>
</tbody>
</table>
Table 3-2. Rustproofing Equipment.

<table>
<thead>
<tr>
<th>NSN</th>
<th>Part Numbers</th>
<th>Description</th>
<th>Quantity</th>
<th>Suppliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>TK2790</td>
<td>Tuffkote High Pressure Power Wash System</td>
<td>As Req'd</td>
<td>Tuffkote Dinol (Distributor for ARO)</td>
</tr>
<tr>
<td></td>
<td>TK5010G</td>
<td>90° Tool</td>
<td></td>
<td>13650 E. Ten Mile Road Warren, MI 48089</td>
</tr>
<tr>
<td></td>
<td>TK5035G</td>
<td>45° Ledge Tool</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TK5031G</td>
<td>90° Straight Bent Tool</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TK5030G</td>
<td>Straight Tool</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TK5050G</td>
<td>60-inch Cone</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TK5070G</td>
<td>Flex Tool</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TK4020</td>
<td>Air Drill</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TK4025</td>
<td>Cutter Blades</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TK4022</td>
<td>Uni-bit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TK4050</td>
<td>Inspection Light</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TK4082</td>
<td>Drum Warmer (55-gallon)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8575</td>
<td></td>
<td>16-gallon Rustproofing Unit Including Pump, Air Regulator, Gage, Filter, Drum</td>
<td>As Req'd</td>
<td>Alemite Rustproofing Systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cover, Band Dolly, Hose Assembly, Three Wands (Long/Rigid, Flexible, and</td>
<td></td>
<td>1001 W. Arizona Ave. Denver, CO 80223</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3½-inch Extension Wand), Spray Gun, and Three Orifices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td></td>
<td>Drum Heater</td>
<td>As Req'd</td>
<td>Electro Flex Inc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P.O. Box 88 Bloomfield, CT 06002</td>
</tr>
<tr>
<td>N/A</td>
<td></td>
<td>High Pressure Washer Systems</td>
<td>As Req'd</td>
<td>Nu Process</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13374 Farmington Rd. Livonia, MI 48150</td>
</tr>
<tr>
<td>N/A</td>
<td></td>
<td>High Pressure Washer Systems</td>
<td>As Req'd</td>
<td>Landa Inc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4920 NE 122nd St. Portland, OR 97230</td>
</tr>
<tr>
<td>6635-00-111-1054</td>
<td>9790010 (07036)</td>
<td>Wet Film Thickness Gage, ⅛-inch Common Drill, Gloves (Oil/Chemical Resistant)</td>
<td>As Req'd</td>
<td></td>
</tr>
<tr>
<td>5133-00-239-0785</td>
<td>271A60</td>
<td>Apron/Shop Coat/Coveralls, ⅛-inch Drill Bit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4240-00-269-7912</td>
<td>BPFI-2</td>
<td>Face Shield</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5340-00-240-9228</td>
<td></td>
<td>⅛-inch Hole Plugs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>252-737</td>
<td>Vanguard</td>
<td>Rustproofing Kit (Includes All of the Following):</td>
<td>As Req'd</td>
<td>Graco Inc.</td>
</tr>
<tr>
<td></td>
<td>2104E</td>
<td>High Pressure Washer</td>
<td></td>
<td>P.O. Box 1441 Minneapolis, MN 55440</td>
</tr>
<tr>
<td></td>
<td>226-269</td>
<td>Rustproofing Pump</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>800-103</td>
<td>Wet Sandblasting Attachment (25-foot Base)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>800-102</td>
<td>Chemical Injector</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>800-017</td>
<td>Spray Gun w/Quick Coupler</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>946-939</td>
<td>Spray Tools: 60-inch Flex Hose, Cone Spray Tip</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>946-940</td>
<td>60-inch Rigid Wand With 90° Spray Tip</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3-4. Powerwash Equipment (Typical).

WARNING

High pressure spray can cause serious injury or death. Never put hand or fingers over the spray tip. Never point spray at another person. Never try to stop or deflect leaks with your hand. Ensure that all components of the wash system can withstand the pressures. Never exceed the rated pressure of the equipment. Even after shut-off, pressure will remain in the system and must be purged by triggering the gun. Inspect all parts of the system before use. If injection injury occurs, get immediate emergency medical care, even for a simple cut.

NOTE

a. Powerwash equipment is used to thoroughly clean a vehicle of all dust, grease, mud, and debris deposits before application of rustproofing material. Powerwash equipment available commercially may be air powered, hydraulic powered, gas powered, or electrical. Units available may also be portable or stationary.
WARNING

Silica exposure hazards exist whenever sand particles are injected into the air. Wet sandblasting lessens health risks, but care must be taken to ensure that applicators use the recommended protective equipment. Silica exposure due to failure to wear protective equipment can result in silicosis, a lung disease similar to emphysema.

NOTE

Sand is used to clean away corrosion from large areas of the vehicle. Sand itself is highly abrasive and will quickly wear the affected surface down to bare metal.

b. Sand injector kits for wet sandblasting of corroded surfaces can also be adapted for use with powerwash equipment. Wet sandblasting should never be implemented indoors nor without use of protective clothing, gloves, goggles, ear protection, and facial respirators.

c. Commercial literature is available upon request from each of the suppliers of powerwash equipment listed in [Table 3-2]. This literature provides much valid and useful information with regard to equipment specifications, operation, and maintenance. CPC officers responsible for establishing a rustproofing program can use the commercial literature to determine which type of equipment best suits the operation, and to obtain maintenance information for the equipment of choice.

d. All powerwash equipment suppliers listed in [Table 3-2] provide good products. This TB in no way endorses one product or supplier over another. Sample troubleshooting instructions provided in [Table 3-3] are typical or representative of such equipment.

e. All powerwash equipment, regardless of size, power source, or portability, have common components (see [Figure 3-1]).

f. [Figure 3-2] provides an overview of a typical portable powerwash equipment operation with remote power (electrical) and water source. The applicant is wearing the proper safety equipment and clothing and is also using the sand injector kit for wet sandblasting of large corroded areas. In the application shown, the water source is hooked up to the pump. The power source operates the pump motor. Water is drawn by the pump and pressurized out to the gun assembly and wand. The sand injector kit is a simple tube device. One end of the tube is inserted into a container of dry sand. The opposite end of the tube is connected to the end of the wand. Pressure from the water shooting out the wand draws the sand up through the tube.

g. With the sand injector removed, the unit illustrated in [Figure 3-2] becomes a simple washer used for cleaning the vehicle of dirt, oil, etc. The wand’s nozzle should be held a foot or so from the surface being cleaned and sprayed at an angle to the surface in order to get underneath the grit. Stubborn deposits may require the application of a detergent (see paragraphs 2-21 and 2-28). Detergents should be applied to an area from the bottom up and rinsed away from the top down with the high pressure washer.

h. [Table 3-3] provides troubleshooting instructions for a typical powerwash unit. Nomenclature used in this table is referenced to [Figure 3-3] through [Figure 3-6].
Figure 3-2. Powerwash Operation (Typical).

Figure 3-3. Pump Assembly (Typical).
3-5. Material Pumps (Typical).

a. Pumps used in the application of rustproofing material are high pressure, air driven motors that mount directly onto the rustproofing material drum. A complete unit consists of the air motor or pump itself as well as attaching air regulator, pressure gage, in-line air filters, a bleed-type master air valve, material filter, and grounding log.

b. Commercial literature is available upon request from each of the supplies of material pumps listed in Table 3-2. CPC officers will benefit from this literature when determining which pump best suits their operation. This literature also provides specific maintenance and repair instructions. Figure 3-7 illustrates a typical material pump. This figure is representative only and is not intended to endorse one product or supplier over another.

c. The air motor pump consists of the air motor and piston cylinder. The assembly rests on a drum topped with the cylinder end immersed in the rustproofing material. The air regulator and pressure gage most often attaches directly into the motor lead. The regulator controls the air pressure going into the pump, thereby also controlling the pump speed.

WARNING

All material pump air lines must be purged of air pressure after operation. Failure to do so could cause the pump to cycle unexpectedly. Serious material injection injury could result.

d. To ensure the safe operation of the pump, an air bleed valve must be installed to purge the system of pressurized air after operation. This bleed valve may be built into the air regulator and gage, or may be a separate item, depending on the supplier.
e. The material pump system should also include an in-line air filter to remove dirt and moisture from the compressed air going into the pump, as well as an air line oiler which automatically lubricates the air motor during operation. These items are attached to the air lines going into the purge valve and air regulator, which are attached directly onto the pump. The compressed air source is a minimum shop requirement (see paragraph 3-2).

f. Grounding of the system during operation is essential due to the potential for a buildup of static electricity. During operation, the pump, the spray gun, and the object being rustproofed should each be well grounded to eliminate the fire/explosive hazard of static electricity in proximity to rustproofing material.

Figure 3-5. Powerwash Spray Gun (Typical).
Figure 3-6. Powerwash Equipment Platform (Typical).
g. Depending on the model pump, the material filter—may be built into the pump or attached to the output of the pump. This filter removes impurities from the material and protects the gun orifice from damage. Figure 3-8 and Figure 3-9 provide cutaway and exploded views of a representative pump. Table 3-4 contains troubleshooting instructions for a material pump.

The following is a list of general maintenance procedures for material pumps:

a. Oil pumps daily with 20W non-detergent oil.
b. Clean foot filter each time a new drum of material is used.
c. Clean material line filter every two weeks.

d. If slide valve freezes, use antifreeze through the air intake to thaw out. Ensure that it is frozen and not simply stuck because of lack of lubrication.

e. Never operate the pump at more than 100 psi (690 kPa). You will damage the piston within the pump shaft.

f. If pump fails to operate, do not strike pump with hammer, etc.

g. Never allow the pump to run dry. A dry pump will quickly accelerate to a high speed, possibly damaging itself.

h. Always flush the unit before material hardens in any part of the system. How often flushing occurs depends upon the material being used. Use the lowest possible pressure to flush. Ground spray gun against waste container.

i. After spraying, always turn off the air at its source and purge the line using the air bleed valve. Disconnect the air line coupler after the line has been cleared. At the output end, trigger the gun into a waste container to clear it of material under pressure. Engage the trigger safety and disconnect the material line at the filter. Clean gun and line.

NOTE
If the grounding wire was disconnected before servicing, be sure to reconnect it before operating the pump.

Figure 3-8. Typical Pump (Cutaway View).
Figure 3-9. Typical Pump (Exploded View).
3-7. Spray Guns.

WARNING

High pressure spray equipment can cause serious injury or death. Never put hand or fingers over spray tip. Never point spray gun at another person. Never try to stop or deflect leaks with your hand. Ensure that all components of the spray system can withstand the pressures. Never exceed the rated pressure of the equipment. Never alter or modify the equipment. Even after shut-off, pressures will remain in the material hose and gun and must be purged by grounding the gun to a waste container and triggering the gun. Never change wands, tips, or any accessories until after system is completely shut off and purged. Inspect all parts of the system before use. Ensure that all fittings are properly installed and tightened, and that hoses are not frayed or cracked. If injection injury occurs, even for a simple cut, get immediate emergency medical care. Inform emergency physicians that the material injected into the skin is a petroleum compound containing aliphatic petroleum naphtha with an effect similar to kerosene.

NOTE

a. A rustproofing material spray gun is used to control and direct the spray of the material, or to stop the spray by releasing the trigger. These spray guns are used in combination with various wands that permit the technician to reach out-of-way places and to apply different spray patterns.

b. There are two types of material spray guns available on the market (see Figure 3-10): (1) **Fogging Gun.** The fogging gun connects the air source directly to the gun along with the rustproofing material. The pressurized air and material converge within the gun where, when the trigger is pulled, they are ejected in a fine mist. This type of rustproofing application is called fogging and is NOT approved for use by U.S. Army installations.

![Fogging and Airless Spray Guns](image)

NOTE

Depending on the installation, the spray gun handle may be equipped with a Z swivel to provide greater maneuverability.

(2) **Airless Gun.** The airless type of spray gun system uses an air motor pump over the drum as discussed in paragraph 3-5. The material pressurized out of the pump, through the material filter, and into the gun is not mixed with air. As a result, the material ejected from the wand end is a pure concentration of rustproofing material.
Table 3-3. Troubleshooting Powerwash Equipment.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Pressure.</td>
<td>Worn nozzle.</td>
<td>Replace nozzle with proper size.</td>
</tr>
<tr>
<td></td>
<td>Belt slippage.</td>
<td>Tighten or replace; use correct belt.</td>
</tr>
<tr>
<td></td>
<td>Air leak in inlet plumbing.</td>
<td>Disassemble, reseat, and assemble.</td>
</tr>
<tr>
<td></td>
<td>Pressure gage inoperative or not registering accurately.</td>
<td>Check with new gage; replace worn or damaged gage.</td>
</tr>
<tr>
<td></td>
<td>Relief valve stuck, partially plugged, or improperly adjusted; valve seat worn.</td>
<td>Clean, adjust relief valve; check for worn and dirty valve seats. Kit available.</td>
</tr>
<tr>
<td></td>
<td>Inlet suction strainer clogged or improper size.</td>
<td>Clean. Use adequate size. Check more frequently.</td>
</tr>
<tr>
<td></td>
<td>Worn plunger cups. Abrasives in pumped fluid or severe cavitation. Inadequate water supply.</td>
<td>Install proper filter. Suction at inlet manifold must be limited to lifting less that 20 feet of water or 8.5 psi (59 kPa) of vacuum.</td>
</tr>
<tr>
<td>Pump runs extremely rough, pressure very low.</td>
<td>Fouled or dirty inlet or discharge valves.</td>
<td>Clean inlet and discharge valve assemblies.</td>
</tr>
<tr>
<td></td>
<td>Worn inlet or discharge valves. Leaky discharge hose.</td>
<td>Replace worn valves, valve seats, and/or discharge hose.</td>
</tr>
<tr>
<td></td>
<td>Restricted inlet or air entering the inlet plumbing.</td>
<td>Install proper size inlet plumbing; check for air tight seal.</td>
</tr>
<tr>
<td></td>
<td>Inlet restriction and/or air leaks.</td>
<td>Replace worn cup or cups, clean out foreign material, replace worn valves.</td>
</tr>
<tr>
<td></td>
<td>Damaged cup or stuck inlet or discharge valve.</td>
<td>Replace worn seals.</td>
</tr>
<tr>
<td>Cylinder O-rings blown next to discharge manifold.</td>
<td>Worn inlet manifold seals.</td>
<td>Check for plugged nozzle, closed valves, or improperly adjusted by-pass valve.</td>
</tr>
<tr>
<td></td>
<td>Pressures in excess or rated psi (kPa).</td>
<td>Replace manifold.</td>
</tr>
<tr>
<td></td>
<td>Warped manifold.</td>
<td>Remove spacer shims on manifold studs. Do not remove too many shims or the manifold will be bowed when the manifold is tightened, causing looseness in the center cylinder.</td>
</tr>
<tr>
<td>Leaksage at the cylinder O-rings at the discharge manifold and black, powdery substance in the area of the O-rings.</td>
<td>Loose cylinders. Cylinder motion caused by improper shimming of the discharge manifold.</td>
<td>Install new seals. If piston rod sleeves are scored, replace sleeves and sleeve O-rings.</td>
</tr>
<tr>
<td>Water leakage from under the inlet manifold.</td>
<td>Worn inlet manifold seals.</td>
<td>Replace O-rings.</td>
</tr>
<tr>
<td>Loud knocking noise in pump.</td>
<td>Worn main ball bearing from excessive tension to drive belt.</td>
<td>Check key and tighten setscrew.</td>
</tr>
<tr>
<td>Frequent or premature failure to the inlet manifold seals.</td>
<td>Pulley loose on crankshaft.</td>
<td>Replace bearings.</td>
</tr>
<tr>
<td></td>
<td>Broken or worn bearing.</td>
<td>Replace inlet manifold seals and wick lubricators, saturating in oil before they are assembled into the manifold assembly. Oil each hole three drops once a month with pump running.</td>
</tr>
</tbody>
</table>
Table 3-3. Troubleshooting Powerwash Equipment (Con 't).

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short cuplife.</td>
<td>Scored rods or sleeves. Over pressure to inlet manifold.</td>
<td>Replace rods and sleeves. Reduce inlet pressure per instructions.</td>
</tr>
<tr>
<td></td>
<td>Damaged or worn chrome plating of the cylinders.</td>
<td>Replace cylinders.</td>
</tr>
<tr>
<td></td>
<td>Abrasive material in the fluid being pumped.</td>
<td>Install proper filtration on pump inlet plumbing.</td>
</tr>
<tr>
<td></td>
<td>Excessive pressure and/or temperature of fluid being pumped.</td>
<td>Check pressures and fluid inlet temperature; ensure that they are within specified range.</td>
</tr>
<tr>
<td></td>
<td>Improper installation of cups.</td>
<td>Properly install lip of new cup into groove on the piston. If not properly installed, the cup will be extruded past the piston. Piston will run eccentric; premature failure will result.</td>
</tr>
<tr>
<td></td>
<td>Chrome plating of cylinders damaged causing excessive wear of cups. May be caused by pumping acid solution.</td>
<td>Install new cups and cylinders. Pump only fluids compatible with chrome.</td>
</tr>
<tr>
<td>Water leaking from valve stem.</td>
<td>Loose cleanout port nut.</td>
<td>Tighten stuffing box. Replace O-rings.</td>
</tr>
<tr>
<td>Short piston seal life.</td>
<td>Worn O-rings on valve stem.</td>
<td>Replace piston sleeve. Flush with clean water.</td>
</tr>
<tr>
<td></td>
<td>Scored piston sleeve.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abrasives in water.</td>
<td></td>
</tr>
</tbody>
</table>

Table 3-4. Troubleshooting Material Pumps.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump continues to cycle after control valve is shut off.</td>
<td>Insufficient material supply.</td>
<td>Add materials as necessary.</td>
</tr>
<tr>
<td></td>
<td>Foot screen filter obstructed.</td>
<td>Remove and clean.</td>
</tr>
<tr>
<td></td>
<td>Leakage in material delivery hose, couplings, etc.</td>
<td>Repair leaks.</td>
</tr>
<tr>
<td></td>
<td>Worn or damaged packings (piston packings and/or upper packings).</td>
<td>Replace worn or damaged packings.</td>
</tr>
<tr>
<td></td>
<td>Worn or damaged gaskets at either the top or bottom of the cylinder.</td>
<td>Replace any worn or damaged gaskets.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3-5. Troubleshooting Material Pumps (Con’t).

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure drop or erratic material delivery.</td>
<td>Excessively cold material.</td>
<td>Apply drum heater to heat material to</td>
</tr>
<tr>
<td></td>
<td>Foot screen filter or in-line filter obstructed.</td>
<td>between 72°F (22°C) and 80°F (27°C).</td>
</tr>
<tr>
<td></td>
<td>Improperly installed or plugged tool filter (1010 tools).</td>
<td>Clean or replace.</td>
</tr>
<tr>
<td></td>
<td>Faulty coupler.</td>
<td>Clean, repair, or replace.</td>
</tr>
<tr>
<td></td>
<td>Worn or damaged packings (piston packings and/or upper packings.)</td>
<td>Replace as necessary.</td>
</tr>
<tr>
<td></td>
<td>Damaged or worn gaskets at the top and/or the bottom of the cylinder.</td>
<td>Replace packings.</td>
</tr>
<tr>
<td>Material delivery is erratic and pump operates with a fast upstroke.</td>
<td>Obstruction at the upper check ball (ball is not seating).</td>
<td>Replace gaskets.</td>
</tr>
<tr>
<td>Material delivery is erratic and pump operates with a fast downstroke.</td>
<td>Worn or damaged piston packings.</td>
<td>Clean or replace parts.</td>
</tr>
<tr>
<td>Air leakage at upper unit.</td>
<td>Obstruction at the lower check ball (ball is not seating).</td>
<td>Clean or replace parts.</td>
</tr>
<tr>
<td>Pump fails to start after air supply is connected.</td>
<td>Worn or damaged piston packings.</td>
<td>Replace packings.</td>
</tr>
<tr>
<td></td>
<td>Worn or damaged O-ring, gasket, or U-cup.</td>
<td>Replace parts.</td>
</tr>
<tr>
<td></td>
<td>Stuck or frozen slide valve.</td>
<td>Free stuck slide valve (see paragraph 3-6).</td>
</tr>
<tr>
<td></td>
<td>Wrong inlet air supply pressure.</td>
<td>Repair or adjust air supply system to obtain an optimum pressure of 40 psi (276 kPa).</td>
</tr>
<tr>
<td></td>
<td>Blocked material line.</td>
<td>Clear obstruction beginning at the tool and working back to the pump.</td>
</tr>
<tr>
<td></td>
<td>Frozen or stuck slide valve.</td>
<td>Free stuck slide valve (see paragraph 3-6).</td>
</tr>
</tbody>
</table>

Figure 3-11 is an example of a typical spray gun system.

c. Commercial literature is available upon request from each of the suppliers of material spray guns, wands, and attaching hardware and hoses, as listed in Table 3-2. This available literature also provides specific maintenance and repair instructions.

d. There are two ways of mounting material filters to the system (see *Figure 3-12* and *Figure 3-13*). There is no difference in performance from one mounting position to another; however, with remote mounting, the added weight on the hose reduces the ease of handling and increases the chance of damaging the filter.

WARNING

Make certain pump motor is turned off and all air lines have been purged of pressure before installing spray gun assembly.

1. Connect the material filter to the output port of the air motor pump, directly or remotely, depending on the model.
In some shop applications, it may be desirable to operate two spray guns from the same material pump. In such instances, a tee may be used at the outlet port of the material filter instead of a direct material hose connection. The multiple material hoses are then connected to the two outlet parts of the tee.

(2) Connect the material hose (black hose) to the outlet port of the material filter.

(3) Connect the opposite end of the material hose to the handle of the gun(s).

Depending on the installation, the spray gun handle may be equipped with a Z swivel to provide greater maneuverability.

f. Once the spray gun system has been connected, refer to paragraph 3-6 for information concerning choice of wands, wand extensions, and assembly to the spray gun.
3-8. Choice of Wands/Positioning Orifice to Adjust Spray.

a. The following information is provided to give the technician a better understanding of the different types of spray tools available and the proper use of these tools when applying the rustproofing compound.

b. Technicians should become familiar with the different spray tools by actually using them and learning what kind of spray pattern each tool produces.

c. Several different types of spray wands are employed, each for a specific operation:

(1) A straight, rigid wand is used to spray the interior of a boxed section of a vehicle (see Figure 3-14). It is a 12-inch (30.5 cm) long wand, with a 90 degree angle flat spray nozzle, having a 0.026-inch (0.66 mm) spray orifice. This wand assembly consists of a tip, nozzle, tube, nut, ferrule, coupling, filter assembly, and quick-disconnect plug. Due to extremely high operating pressures, it is important that all connections be properly tightened to prevent leakage of rustproofing material.

(2) To spray exterior underbody panels and framerail, the straight-through-nozzle wand is used (see Figure 3-15). This tube is 12 inches (30.5 cm) long and has a 45 degree angle, bent 1 1/2 inches (3.8 cm) from the nozzle end. The nozzle used with this wand is a straight-through, flat pattern type, with a 0.026-inch (0.66 mm) orifice.
Another type is the flexible wand (see Figure 3-16, A). This wand is 72 inches (182.9 cm) long, and is used primarily for fog spraying rocker panels and enclosed curved sections.

The rigid spray wand is 60 inches (152.4 cm) long, and is used for spraying door panels and other enclosed body areas (see Figure 3-16, B).

The flat fan spray extension is an all-purpose spray wand (see Figure 3-17, C). Because of the slight bend and size, the handling of this equipment is less difficult than the rigid straight tube type; it can get into areas that other wands cannot.

In order to deliver the correct spray pattern, the orifice in each tool must be properly installed (see Figure 3-18).

e. A carbide orifice is designed to deliver a fan-type spray that is wide, but thin (see Figure 3-19).

f. The correct position of the orifice in a 90 degree tool (see Figure 3-17, D) is shown in Figure 3-18. The orifice on the straight spray tool should be lined up with the directional handle of the tool itself.

NOTE

Ensure that the orifice is positioned properly, especially in a 90 degree spray tool, otherwise the results will be a thin line of material instead of a complete sweeping effect.

Figure 3-16. Wands, Flexible/Rigid.

Figure 3-17. Wand Extensions.

Figure 3-18. Positioning Orifice.

Figure 3-19. Spray Patterns.
g. Use the following procedure to adjust the nozzle tip pattern:

1. Loosen the tip retaining nut.

2. Rotate the tip until slot is in line with the wand directional handle.

3. Hold tip in this position and tighten retaining nut.

When the working area temperature drops below 50°F (10 °C), use of a drum heater is recommended.

b. The drum of rustproofing compound should be placed on a raised platform above the floor to prevent transfer of floor temperatures to drum contents.

c. Heater should be placed around the drum approximately 12 hours prior to compound application. Before the rustproofing operation begins, recirculate the compound through the drum to ensure uniform temperatures. This will ensure that rustproofing materials are more fluid and easier to spray.

CAUTION

Belt-type heaters must not be used with plastic containers or containers with plastic liners. The plastic may melt and cause damage to the equipment and the vehicle.

d. There are two types of drum warmers, belt-type and full wrap (see Figure 3-20). The full wrap drum heater is much more efficient because it warms the material evenly and quickly.

![Figure 3-20. Drum Heaters.](image)

Section II. RUSTPROOFING APPLICATION TECHNIQUES

3-10. General Requirements/Safety Precautions,

a. **Battery.** The positive (red) terminal of a vehicle's battery must be covered to prevent grounding the battery through a spray tool.

b. **Front End.** It is sometimes necessary to remove headlight rims in order to spray coat the headlight buckets and associated hardware. If they are metal, be sure to paint the backside of the rims before they are replaced. Some late model commercial vehicles may have carburetor air intakes located inside one of the
front fenders or on either side of the radiator. Ensure that no foreign material clogs these intakes.

c. Seat Belts. Seat belts which roll back into the rocker panel must be pulled out before processing. Use caution when processing this area so you don’t coat the return rollers.

d. Hoses. Air and material hoses must kept clean. After cleaning, dry them off with a rag and coat them with silicone spray. This will help prevent sealant from sticking to them.

e. Pedals and Windshield Wiper Blades. Use rags to cover all of the pedals and the windshield wiper blades.

f. Disc Brakes. Conventional and disc brakes must never be sprayed. Ensure that you know the location of all brakes and use caution to avoid spraying them. Cover these areas prior to processing the underside.

g. Engine Compartment. When processing the engine compartment, do not get material on the transistor electrical systems, regulators, alternators, generators, radiators, horns, engine blocks, or electrical wiring. Avoid ignition resistors, windshield washer solvent reservoir, heater assemblies, and pollution control systems.

h. Firewall Exterior. Spray the complete firewall exterior with straight rigid cone spray tool, sweeping as required,

i. Window Channels. Because of rustproofing’s adhesive qualities, avoid getting material into the window channels, doors, and tailgates. Material in these channels can cause two kinds of damage: the solvents in the material may affect the adhesion between the window channel and the channel liner, allowing the liner to fall off or stick to the window itself; or the material will prevent the window from being either lowered or raised. After processing, each window must be checked by raising and lowering it a few times. Windows must be in the up position after rustproofing.

j. Fenders. Do not neglect the exterior lower rear areas of both front and rear fenders on many vehicles. These are subject to abrasion due to debris being thrown upward by the tires. This abrasion can lead to surface corrosion.

k. Radiator Shutters. Many large trucks are equipped with moveable radiator shutters that open automatically or manually, according to engine temperature. When rustproofing vehicles so equipped do not coat the shutters, hinge areas, or electrical connections. Shutters which are sealed shut with rustproofing material can cause the engine to overheat.

l. Use of Hoists. Drive shafts can be bent when improperly placed on frame contact hoists. Special care must be used when placing all vehicles on lifts.

m. Front and Rear Soft Fascia. Many parts are made of plastic; excessive rustproofing will cause distortion and unsightly appearance due to swelling. Do not spray such areas.

n. Overspray. If overspray is immediately wiped off fenders, doors, etc., the final cleanup process will be easier.

o. Underbody. If the underside of a vehicle is processed last, the cleanup will be simplified by lowering the vehicle to chest level, and cleaning the lower body first. It is much easier to clean lower fenders, wheel covers, bumpers, grilles, and rocker panels with the vehicle at this level. Lower the vehicle to the floor and clean the top with solvent and powerwash equipment.

p. Hot Weather. To avoid excessive dripping in hot weather, note the following tips:

(1) Turn the pressure down on the pump until the spray pattern from the tools turns to a nonuniform or fingerlike pattern. Turn the pressure up until the spray pattern becomes uniform. You then have the proper spray pattern at the lowest pressure.

(2) Because material will drip more in hot weather, move tools quickly in order to apply the compound at the required thickness with complete coverage.

(3) If possible, put vehicles in the sun and allow them to drip for a few hours. Afterwards put them in the shade for a half hour to cool down.

q. Cold Weather. On cold days, material pumps can be prevented from freezing by injecting three or four spoonfuls of antifreeze (ethylene glycol) into the air intake.

r. Cleaning. After a vehicle has been rustproofed, it should never be steam cleaned. The heat from steam cleaning will loosen and remove the rustproofing compounds. High pressure washers using chemical detergents are adequate to meet all cleaning needs.

a. Emission control equipment is installed as an integral part of the anti-pollution package. Federal law prohibits covering or destroying the instruction placard, or interfering with the filter element on the emission control canister. The instruction placard and emission control canister are located in the engine compartment.
The placard can usually be found on the inner wheel housing or the radiator support shield, and the canister is usually located in the forward lower section of the engine compartment.

b. To comply with this federal law, the following procedure is recommended:

(1) Locate the emission control instruction placard and use masking tape to cover before spraying. Remove the tape after spraying the engine compartment.

(2) While processing the bottom side, locate emission control canister and tape or wrap a rag around the filtering element to prevent coating. The canister can be identified by its round, black, can-shaped appearance with two rubber hoses attached to it. The filter element is on the bottom side of the canister and is a foam or fiber type.

CAUTION

Do not apply rustproofing materials closer than 12 inches (30.5 cm) from the catalytic converter and heat shields. Wipe off any overspray prior to removing vehicles from hoist. Failure to do so will cause overheating and possible damage.

c. Catalytic converters are a mandatory requirement on vehicles weighing 6,000 pounds (2,724 kg) or less. These converters operate at extremely high temperatures of 1,000°F (538°C) to 1,700°F (927°C), and could be a potential fire hazard. To eliminate the possibility of fires, heat shields have been installed between the bottom side of the floor and the converter to dissipate heat. Rustproofing must not be applied closer than 12 inches (30.5 cm) from the converter or heat shield.

3-12. General Cleanup Instructions.

NOTE

The more the vehicle is driven after rustproofing, the quicker it will set up.

a. After cleanup of a vehicle, leave doors ajar to allow material to drip on the pavement and not on the rockerpanels.

b. Overspray must be removed from the radiator, oil pan, transmission pan, clutch control rods, drive shaft, brakes, shock absorbers, and tires. Material left on the tires, wheels, or drive shaft may cause excessive vibration, resulting in costly damage. Material on the brake mechanism may render the brakes ineffective due to the lubricative properties of rustproofing compound.

c. Rustproofing compound will penetrate sound deadening material in doors and of rustproofing can only happen if the sound deadening material is reasonably new.

Section III. VEHICLE PREPARATION

3-13. Precleaning the Vehicle,

a. Every vehicle must be clean and dry before rustproofing. The use of a high pressure washer will provide the best means of vehicle cleaning.

b. Direct the water spray at every area where dirt has accumulated. Inspect such areas as the fender lips, lower fender brace, top of frame members, etc., in order to ensure that the entire underside is clean. Particular attention should be given to the front fenders, since dirt is often packed around headlight housings and eyebrow areas.

c. It takes at least four hours to completely dry a vehicle under ideal conditions.

3-14. Inspections (Fielded Vehicles).

NOTE

If the rust is in Stage 1 of its development, it will be neutralized by rustproofing only if the area is properly processed. Refer to paragraph 2-3 for a definition of Stage 1 rust.

a. Using the inspection light, inspect the entire vehicle, paying particular attention to the areas where dirt and moisture collect. Any seam beginning to split or expand must be repaired, as well as metal surfaces that have begun to pit or flake.
b. Remove any vents or plugs that will enable you to see the interior of the sheet metal, where serious rust develops.

c. Begin at the front of the vehicle. Open hood and check the perimeter. Proceed to the top seams of the fenders, and eyebrows. Look through openings in fenders (where possible) to check as much of the front fender and wheel house seam as possible. Look down the frame and check for flaking. Check the battery box, radiator supports, and headlight hardware.

d. Proceed to the driver's side of the vehicle. This side of the vehicle will rust faster because oncoming traffic will splash salt-laden water and slush onto the vehicle. Check for bubbling and discolored paint, which in most cases is caused by rusting from the inside. If you find any rusted area on the outside of the vehicle, determine whether it is surface rust, due to a paint nick or a poor paint job, or if it is working its way out from the inside. Keep checking for any signs that may indicate that the vehicle has been repaired. If the area was properly repaired because it was damaged by an accident, it should not include the use of plastic fillers. In some instances, only an expert body man can recognize a proper repair job, so be extremely careful.

e. With the front door open, look through the door hinge opening and check the front fender, wheel house seam, and fender brace. The fender brace is the most critical area of the vehicle, and should be inspected from the inside and outside of the vehicle. If a seam has begun to discolor, it is an indication that the seam may begin to split. It must be repaired along with other rust damaged areas.

f. Check all seams on doors, doorjambs, and doglegs. Look for chipped or bubbling paint, or discoloration of the paint and splitting seams. If the paint is chipped, you have a surface rust problem. If the paint is bubbling, there is a chance that Stage 2 or 3 rust has developed. If there is good metal under it, it is probably because the metal wasn’t prepared properly before painting, or because a small chip in the paint enabled impurities to get underneath the paint, corroding the metal. If you cannot find good metal under the bubbling paint, the rust has worked its way through the metal and must be repaired. If the seams have begun to split, Stages 3 and 4 rust have developed and must be repaired.

g. On most vehicles, if you roll the window down, you can look through the top of the door to inspect the outer skin. If this is not possible, the condition of the seams will give you a true indication of the condition of the door.

NOTE

On some vehicles, it will be necessary to remove the taillights or loosen an interior panel to properly inspect the quarter panel.

h. Inspect the rest of the quarter panel and wheel house seam, floor extensions, and the seams around taillights. Inspect the perimeter of the tailgate, particularly the rear or bottom seam where dirt and moisture settle.

i. Look through the wheelwell openings and check the condition of the underside (steel housings, floor pan, frame, etc.) If you feel that you cannot properly inspect the underside this way, put the vehicle up on a hoist and check.

3-15. General Drilling Instructions.

WARNING

Drilling metals can be extremely dangerous. Wear proper eye protection and keep hands away from cutting tool. Sharp fragments may remain around the drilled area. Use extreme caution when touching these areas.

CAUTION

When drilling holes using a conventional 1/2-inch (1.3 cm) drill bit, use caution not to damage components located behind hole locations.

a. If using a conventional 1/2-inch (1.3 cm) drill bit, place a short piece of 1/2-inch (1.3 cm) i.d. hose on the drill bit, approximately 1/2 inch (1.3 cm) from the tip. This will prevent possible damage to components located behind hole locations (see Figure 3-2).

b. Except when otherwise indicated, hole locations are approximate, and should be sight drilled. Rustproofing tools vary. Some hole locations may have to be adjusted to suit the spray patterns of those specific tools. All drilled access holes should be 1/2 inch (1.3 cm) in diameter. This will allow the entrance of a variety of tools.

c. All chips from drilled holes should be removed immediately.
d. Cutter blades are designed to cut most efficiently between 2100 and 3000 rpm. High speed drill motors will cause the blades to overheat and become work-hardened and brittle.

e. Cutter blades should be dipped in oil after every other vehicle is drilled. This will prolong their usefulness.
CHAPTER 4
1/4-TON TRUCK: M151, M718, AND M825 SERIES

Section I. PRELIMINARY PROCEDURES

4-1. Component Removal.

a. Prior to rustproofing, the following components must be removed for access (see TM 9-2320-218-20 and TM 9-2320-218-34):

(1) Spare tire and wheel assembly.

(2) Release soft top rear panel tie-down straps, if equipped, and lay soft top panel over vehicle top.

(3) Taillight assemblies (M151A2 Series only). Tape assemblies to bumperettes. Leave electrical leads connected.

(4) Windshield frame-to-cowl seal.

(5) Litter support and flange (M718A1 Series).

(6) Gas tank.

b. The M151, M718, and M825 1/4-Ton Trucks referenced in this chapter are illustrated in Figure 4-1.

Section II. DRILLING AND CLEANING PROCEDURES

4-2. Drilling Procedures.

NOTE

Unless otherwise indicated, all holes should be sight drilled and should be 1/2 inch (1.3 cm) in diameter,

a. General. Refer to paragraph 3-15 for general drilling instructions,

b. Drilling Engine Compartment (see Figure 4-2). Drill two holes A and B in each side of firewall. Holes A are drilled into the edge of the raised area of the firewall. Holes B are drilled directly into the firewall.

c. Drilling Crew Compartment Inner Rails (see Figure 4-3). Drill one hole A on each side of the crew compartment inner rails.
d. Drilling Spare Tire Mounting Bracket (see Figure 4-4). Locate by sight, and drill holes A, B, and C in spare tire carrier.

Figure 4-2. Drilling Engine Compartment.

Figure 4-4. Spare Tire Mounting Bracket.

e. Drilling Windshield Frame (see Figure 4-5):

(1) Drill two holes A in the rear of windshield frame. Holes are to be drilled 7/16 inch (11 mm) from the top edge and 3 inches (7.6 cm) from each side edge.

NOTE

Drill holes B from underneath whenever possible.

(2) Drill a hole B in each side edge of windshield frame. Holes are to be drilled 1 1/2 inches (3.8 cm) from the top edge and 1/2 inch (13 mm) from the rear edge.

(3) Drill three holes C in the bottom edge of windshield frame. All holes are drilled 3/4 inch (19 mm) from the front edge of the windshield. One hole is drilled 1 1/2 inches (3.8 cm) toward the center from the hinges.

Figure 4-3. Drilling Crew Compartment Inner Rails.
Figure 4-5. Drilling Windshield Frame.

f. Drilling Cargo Body Floor (M151 and M718A) (see Figure 4-6).

(1) Drill two holes A in cargo floor. Holes are to be drilled 13 3/16 inches (33.5 cm) from the floor plate weld seam and are to be sighted in line with the side walls of the fender wells.

(2) Drill two holes B in cargo floor. Holes are to be located 13 3/16 inches (33.5 cm) from floor plate weld seam and 3 1/2 inches (8.9 cm) from holes A.

(3) Drill two holes C. Holes are to be drilled 15 1/2 inches (39.4 cm) inside of the wheel wells, and 1 3/4 inches (4.4 cm) ahead of the floor plate weld seam.

(4) Drill two holes D in cargo floor. Holes are to be drilled in the center of the rear body reinforcement and 6 inches (15.2 cm) to either side of the body centerline.

g. Drilling Cargo Body Floor (M825 Only) (see Figure 4-7).

(1) Drill two holes A.

h. Drilling Underbody (M151 and M151A1) (see Figure 4-8).

(1) Drill all holes as shown.

(2) Holes D and F are drilled on the back side of the front crossmember.

(3) Holes A are drilled in the front bumper face for rustproofing the front framerails.

(4) Holes U are drilled in the rear face of the rear crossmember for rustproofing the rear framerails.
i. Drilling Underbody (M151A2, M718A1 and M825) (see Figure 4-9).

1. Drill all holes as shown.

2. Holes V and W will penetrate two layers of metal on the M151A2 and the M718A1. They will penetrate only one layer on the M825 due to the rear cargo reinforcement having been removed.

3. Two holes X are visually located on the bottom surface of the rear crossmember, directly in line with the outer bolts for the rear bumper guards.

4. Holes D and F are drilled in the rear facing edge of the front crossmember. They are drilled about 1 inch (2.5 cm) from the angles.

5. Holes Y and Z are drilled at the bottom of the inner and outer suspension arm brackets.

4-3. Cleaning Procedures.

WARNING

When cleaning, water may be discharged in excess of 1200 psi (8274 kPa) from high pressure water equipment. Serious injury could result. Eye protection must be worn to prevent injury.

CAUTION

Steam cleaning will not be used.

a. Wash the interior of framerail structures through drilled access holes to remove mud, dirt, and rust. Use of a high pressure washer will facilitate this process. Observe the water flushed through the rails to determine when the structure is clean.
b. Allow at least four hours for vehicle drying. Additional drying time may be required if unfavorable weather conditions exist. Compressed air may be used to speed up the drying process.

c. Prime and paint those areas showing bare metal. Allow painted areas time to dry before rustproofing.

Figure 4-7. Drilling Cargo Body Floor (M825 Only).
Figure 4-8. Drilling Underbody (M151 and M151A1).
Figure 4-9. Drilling Underbody (M151A2, M718A1, and M825),
CAUTION

Do not spray any portion of moving components, transmission, transfer case, cylinders, pumps, valves, prop shaft, exhaust system, rubber bump stops, brakeds, brake backing plates, parking brake linkage, shift linkage, tires, electrical components, engine linkages, or air intake systems. Cover all areas with paper where necessary.

NOTE

- There are areas where a 10 mil wet film thickness cannot be obtained without wasting a large amount of compound. In those areas, complete coverage of the surface area is necessary at whatever thickness is obtainable.
- For rustproofing procedures of specific body items, refer to Figure 4-10 through Figure 4-15.

a. Dry Film Thickness Requirements, A five mil dry film thickness is required for adequate rustproofing protection. A 10 mil wet film thickness is required to obtain a minimum five mil dry film thickness. If needed, the vehicle can be resprayed to reach proper thickness.

b. Spraying Pressure. The rustproofing compound should be applied to sheet metal and structural members in even coats. Spraying pressure should be as low as possible while maintaining an even spray pattern. An acceptable starting point is 40 psi (276 kPa), but adjustments may have to be made, due to temperature changes and differences in rustproofing compound. Using too much pressure will waste compound by causing overspray and excessively thick coatings.

c. Rustproofing Firewall (see Figure 4-10).

(1) Insert flexible tool as far as possible into firewall holes A and B, then spray in all directions while slowly withdrawing tool. Enlarge holes to allow entrance of flexible tool, if necessary.

(2) Plug all holes.

d. Rustproofing Crew Compartment Rails (see Figure 4-11).

(1) Insert 90 degree short tool into hole A of the inner rails as far as possible, then spray in all directions

(2) Plug all holes.

(3) Use short rigid tool to spray the floor areas under the gas tank and all areas including the surrounding sills.

e. Rustproofing Spare Tire Carrier (see Figure 4-4), Insert 90 degree short tool into holes A, B, and C of the spare tire carrier, then spray in all directions.
f. Rustproofing Windshield Frame (see Figure 4-12).

NOTE
Only holes B and C are used on the M825 Series.

(1) Insert flexible tool into hole A of the upper frame and hole B of the side frame, then spray slowly while withdrawing the tool.

(2) Insert 90 degree short tool into holes C of the lower frame and spray in all directions.

(3) Plug all holes.

g. Rustproofing Cargo Body (see Figure 4-13).

(1) Insert 90 degree short tool into holes A, B, C, and D of the cargo bed and spray in all directions.

(2) Use the short rigid tool to spray all surfaces of the taillight openings.

(3) (M825 only). Insert 90 degree short tool in holes A and B and spray in all directions.

(4) Plug all holes.
h. Rustproofing Underbody (M151 and M151A1) (see Figure 4-14).

(1) Insert long rigid tool into the front framerail holes A as far as possible and spray while slowly withdrawing tool.

(2) Insert 90 degree short tool into the following areas of the underbody and spray the rustproofing compound in all directions:

(a) Front framerails - holes B.
(b) Front crossmember - holes C, D, E, F, and G.
(c) Center outer framerails - holes H, J, and K.
(d) Center inner framerails - holes L, M, and N.
(e) Rear crossmember - holes O and P.
(f) Rear framerails - holes Q, R, and S.
(g) Rear sill - holes T.

(3) Insert long rigid tool as far as possible into the rear sill hole U, then slowly withdraw tool while spraying.

(4) Use short rigid tool to completely spray all exterior underbody surfaces.

(5) Plug underbody holes A, U, F, and D.

i. Rustproofing Underbody (M151A2, M718, and M825) (see Figure 4-15).

(1) Insert 90 degree short tool into the following areas of the underbody and spray the rustproofing compound in all directions:

(a) Front framerails - holes A and B.
(b) Front crossmember - holes C, D, E, F, and G.

(c) Center outer framerails - holes H, J, and K.
(d) Center inner framerails - holes L, M, and N.
(e) Rear crossmember - holes O, P, Q, and R.
(f) Rear framerails - holes S, U, and T.
(g) Rear sill - holes V, W, and X.

NOTE
Holes 1 are the spring openings.

(2) Insert long rigid tool into the rear suspension arm holes 1 as far as possible. Withdraw slowly while spraying in all directions.

NOTE
Holes 2 are the shock absorber openings.

(3) Insert long rigid tool into the rear suspension arm holes 2 as far as possible. Withdraw slowly while spraying in all directions.

(4) Use short rigid tool to completely spray the underbody.

(5) Plug front crossmember holes D and F.

NOTE
● Holes Y are located in the sides of the frame members.
● Holes Z are located under the rear suspension arms.

(6) Insert flexible tool into rear frame sills Y and rear framerails Z and spray in all directions.
Figure 4-14. Rustproofing Underbody (M151 and M151A1).
Figure 4-15. Rustproofing Underbody (M151A2, M718A, and M825).
4-5. Rustproofing Inspection.

a. Check the vehicle to ensure that all areas requiring rustproofing compound have been properly and completely coated.

(1) Check seams, welds, corners, and boxed areas to ensure that they are adequately coated.

(2) Check wet film thickness with a wet film thickness gage (see Figure 4-16). A wet film thickness of 10 mils is required. In areas where a wet film thickness of 10 mils cannot be obtained or where thickness cannot be measured, inspect for completeness of coverage.

(3) Check all drain holes to ensure that they are open.

(4) Check all inspection holes and drilled access holes to ensure that compound coverage is adequate. Use of a high intensity inspection light will help with this process.

(5) Check vehicle to ensure that no compound has been applied to prohibited areas (see CAUTION, paragraph 4-4).

NOTE

Plugging of access holes may be delayed until after vehicle inspection, if inspection occurs immediately after rustproofing. If inspection is delayed too long, rustproofing compound may drip from access holes.

b. Plug access holes.

Figure 4-16. Film Thickness Gage.

4-6. Component Installation.

Install all components that were removed in paragraph 4-1 of this chapter (see TM 9-2320-218-20 and TM 9-2320-218-34).
CHAPTER 5
1 1/4-TON TRUCK: M880 AND M890 SERIES

Section 1. PRELIMINARY PROCEDURES

5-1. Component Removal.

CAUTION

Electric leads to light assemblies do not have to be disconnected. Tape the light assembly to body or cab to prevent damage.

NOTE

On cargo trucks with body mounting equipment (troop seats, cargo cover, S-250 shelter, radio rack, etc) remove equipment as required to allow for access to rustproofing points.

a. Prior to rustproofing, the following components must be removed for access (see TM 9-2320-266-20 and TM 9-2320-266-34):

(1) Seat assembly.
(2) Floormat (discard).
(3) Domelight assembly.
(4) Both sunvisors.
(5) Vent covers and control (left side),
(6) Both taillight assemblies.
(7) Both headlight assemblies.
(8) Both front parking light assemblies.
(9) Both front side marker lights.
(10) Both door window regulator handles, door handles, black plastic door trim liner, and clear plastic sheet from door.
(11) Rubber plugs inside rocker panels.
(12) Rubber plugs in floor board.
(13) Rubber plugs behind seat,
(14) Rubber plugs in kick panels.
(15) Spare tire and mounting bracket.
(16) Both doorjamb scuff plates.
(17) Remove both batteries for 24 volt system (if so equipped).

b. [Figure 5-1] provides a reference illustration of the M880 and M890 1 1/4-Ton Trucks discussed in this chapter.

Figure 5-1. M880 and M890 1 1/4-Ton Trucks.
5-2. Drilling Procedures.

NOTE

- Unless otherwise indicated, all holes drilled should be sight drilled and should be 1/2 inch (1.3 cm) in diameter.
- Drill holes at approximate locations indicated by the black dots.

a. General. Refer to paragraph 3-15 for general drilling instructions.

b. Drilling Inner Hood Panel (see Figure 5-2). On older models, drill 19 holes in the inner hood panel support. Later models will have existing holes which are located at points D, K, L, and R.

c. Drilling Cowl (see Figure 5-3). Drill 11 holes in cowl. Holes A and B should be 5 inches (12.7 cm) from the inside of fenders. Hole F should be 6 inches (15.2 cm) from the inside of the fender. All other holes are sight drilled.
d. Drilling Front Fenders and Rocker Panels (see Figure 5-4). Drill four holes on each side. Holes A and B may be sight drilled. Hole C is drilled below the center of the fender support. Hole D can be sight drilled inside the fender well.

![Figure 5-4. Drilling Front Fenders and Rocker Panels.]

Figure 5-4. Drilling Front Fenders and Rocker Panels.

e. Drilling Taillight Opening (see Figure 5-5). Drill one hole A in each taillight opening. Holes are sight drilled.

![Figure 5-5. Drilling Taillight Opening.]

f. Drilling Front Cargo Bed (see Figure 5-6). Drill five holes in front of the cargo bed, Hole C is drilled first at the center of the bed. The remaining four holes are then spaced approximately 12 inches (30.5 cm) apart.

![Figure 5-6. Drilling Front Cargo Bed.]

g. Drilling Rear of Doors (see Figure 5-7). Drill two holes A and B in each door. Holes are sight drilled.

![Figure 5-7. Drilling Rear of Doors.]

5-3
h. Drilling Top of Doors (see Figure 5-8). Drill four holes A, B, C, and D in the top of each door. Holes are sight drilled.

j. Drilling Lower Front Doorjambs (see Figure 5-10). Drill one hole A in the lower front area of each doorjamb. The hole is to be sight drilled.

i. Drilling Front of Doors (see Figure 5-9). Drill four holes A, B, C, and D in the front of each door. Holes are to be sight drilled with holes A and B approximately 10 inches (25.4 cm) apart.

k. Drilling Roof and Top of Doorjambs (see Figure 5-11).

1. Drill a total of 12 holes in the roof and the top of doorjambs on both sides.

2. Holes A are drilled 3 1/4 inches (8.3 cm) to the rear of metal joint. Holes B are drilled 2 inches (5.1 cm) forward of metal joint. Holes C and D are drilled at 6-inch (15.2 cm) intervals forward of hole B.

3. Holes E and H are drilled directly in line with headlined side creases and 1 3/4 inches (4.4 cm) from the front headlined crease.

4. Holes F and G are drilled at approximately 13-inch (33 cm) intervals from holes E and H, and 1 3/4 inches (4.4 cm) from the front headlined crease.
1. Drilling Rear Window Frame (see Figure 5-12).
Drill five holes A, B, C, D, and E in rear window frame.
Hole C is centered on the window frame. Holes A, B, D, and E are drilled at 12-inch (30.5 cm) intervals on both sides of hole C.

m. Drilling Body Support Channels (see Figure 5-13), Drill four holes A, B, C, and D in body support channels. Holes are to be sight drilled.
5-3. Cleaning Procedures.

WARNING

When cleaning, water may be discharged in excess of 1200 psi (8274 kPa) from high pressure water equipment. Serious injury could result. Eye protection must be worn to prevent injury.

CAUTION

Steam cleaning will not be used.

a. Wash interior of frame rail structures through drilled access holes to remove mud, dirt, and rust. Use of a high pressure washer will facilitate this process. Observe the water flushed through the rails to determine when the structure is clean.

b. Allow at least four hours for vehicle drying. Additional drying time may be required if unfavorable weather conditions exist. Compressed air may be used to speed up the drying process.

c. Prime and paint those areas showing bare metal. Use inspection light where available. Allow painted areas time to dry before rustproofing.

Section III. RUSTPROOFING PROCEDURES

5-4. Rustproofing Procedures.

CAUTION

Do not spray any portion of moving components, transmission, transfer case, cylinders, pumps, valves, prop shaft, exhaust system, rubber bump stops, brake-drums, brake backing plates, parking brake linkage, shift linkage, tires, electrical components, engine linkages, or air intake systems. Cover all areas with paper where necessary.

NOTE

- There are areas where a 10 mil wet film thickness cannot be obtained without wasting a large amount of compound. In those areas, complete coverage of the surface area is necessary at whatever thickness is obtainable.
- For rustproofing procedures of specific body items, refer to Figure 5-14 through 5-29.

a. Dry Film Thickness Requirements. A five mil dry film thickness is required for adequate rustproofing protection. A 10 mil wet film thickness is required to obtain a minimum five mil dry film thickness. If needed, the vehicle can be resprayed to reach proper thickness.

b. Spraying Pressure. The rustproofing compound should be applied to sheet metal and structural members in even coats. Spraying pressure should be as low as possible while maintaining an even spray pattern. An acceptable starting point is 40 psi (276 kPa), but adjustments may have to be made due to temperature changes and differences in rustproofing compound. Using too much pressure will waste compound by causing overspray and excessively thick coatings.

c. Rustproofing Underbody (see Figure 5-14).

(1) Insert 90 degree short tool into body support channel holes A, B, C, and D and spray in all directions.

(2) Insert 90 degree flexible tool in cargo bed channels as far as possible, then withdraw tool slowly while spraying.
Use short rigid tool to areas of the complete underbody.

Spray all inaccessible areas with a 90 degree short cone: framerails, bedside walls, wheel lips, and wheelwells.

d. Rustproofing Cargo Body Walls (see Figure 5-15). Insert 90 degree tool through openings in the inner cargo walls at areas A and B. Spray in all directions.

e. Rustproofing Rocker Panels (see Figure 5-16).

NOTE

Holes A, B, and C are located under the bottom edge of the vehicle.

(1) Insert 90 degree short tool in rocker panel holes A, B, C, and fender bottom well holes D.
(2) Spray in all directions.

(3) Plug holes D in fender bottom well.

f. Rustproofing Cowl (see Figure 5-17).

(1) Insert 90 degree tool into holes A through L in cowl and spray in all directions.

(2) Completely cover open seam M using short rigid tool; also coat cowl.

(3) Spray directly over holes A through L to cover areas that may have been missed by the 90 degree short tool.

g. Rustproofing Engine Compartment (see Figure 5-18).

(1) Use short rigid 90 degree tool to completely coat the following parts of the engine compartment:
 (a) Front of cab wall.
 (b) Rear of radiator wall.
 (c) Wheelwell top.
 (d) Inside of fender.
 (e) Bottom of front fender.
 (f) Bottom of rear fender.

Figure 5-17. Rustproofing Cowl.

Figure 5-18. Rustproofing Engine Compartment.
(2) Ensure that all seams, welds and corners are coated with rustproofing compound. Rustproof both sides of the engine compartment. Remove battery and rustproof battery tray of 24 volt system (if applicable). Cover all areas that are inaccessible with short rigid 90 degree tool.

h. Rustproofing Hood (see Figure 5-19).

(1) Insert 90 degree short tool into holes C, D, E, F, G, H, J, L, O, P, Q, and R and spray in all directions.

(2) Insert flexible tool as far as possible into holes A, B, T, S, N, M, U, and V, then withdraw tool slowly while spraying.

(3) Use short rigid tool to completely coat inner panel and spray over all holes to cover areas that may have been missed by the 90 degree short tool.

i. Rustproofing Grille (see Figure 5-20). Use 90 degree short tool to coat rear of grille, front of radiator wall, and rear of headlamp bezels.
j. Rustproofing Fenders (see Figure 5-21). Insert 90 degree long tool as far as possible through the headlamp opening holes on front fenders. Withdraw tool while spraying in all directions. Be sure to coat between fender reinforcement and fender skin.

k. Rustproofing Rear Body and Tailgate (see Figure 5-22).

(1) Insert 90 degree short tool in taillight lamp opening at the rear of the body as far as possible. Spray in all directions while slowly withdrawing tool.

(2) Insert 90 degree long tool in holes B and C in tailgate as far as possible. Spray in all directions while slowly withdrawing tool.

m. Rustproofing Doorjamb (see Figure 5-24).

(1) Insert 90 degree short tool in holes A, B, C, and D in doorjamb and kick-pad areas on the front door, and spray in all directions.

(2) Insert 90 degree short tool in kick panel and vent openings, and spray in all directions.

(3) Spray as much as possible of the doorjamb and rear of front fenders with short rigid tool.

(4) Plug holes A, B, C, and D.
n. Rustproofing Front Floor (see Figure 5-25). Insert 90 degree short tool in hole A on front floor and spray in all directions.

(2) Insert 90 degree short tool in holes A and B on the rear floor and spray in all directions.

(3) Plug hole C.

p. Rustproofing Rocker Panels and Rear Floor (see Figure 5-26).

(1) Insert 90 degree short tool into hole C in the rocker panel as far as possible, then spray in all directions while slowly withdrawing tool.

(3) Insert 90 degree short tool in sunvisor access hole as far as possible and spray in all directions while slowly withdrawing tool.

(4) Insert short rigid tool into all openings and holes A through H and spray all areas not covered by the 90 degree tool.

(5) Plug holes A through H.

q. Rustproofing Rear Window Frame (see Figure 5-28).

(1) Insert 90 degree short tool in rear window frame holes A, B, C, D, and E as far as possible, then spray in all directions while slowly withdrawing tool.

(2) Insert flexible tool in rear window frame holes F as far across as possible, then spray in all directions while slowly withdrawing tool.

(3) Plug holes A through E.
5-28. Rustproofing
Window Frame.

(1) Insert 90 degree short tool in rear of door holes A and B, and holes in top of door C, D, E, F, and G as far as possible. Spray in all directions while slowly withdrawing tool.

5-29. Rustproofing Rear and Top of Door (see Figure 5-29).

(2) Insert short rigid tool in holes C, D, E, F, and G in top of door and cover all areas not previously coated.

(3) Plug all holes.

Figure 5-30. Film Thickness Gage.

(3) Check all drain holes to ensure that they are open.

(4) Check all inspection holes and drilled access holes to ensure that compound coverage is adequate. Use of a high intensity inspection light will enhance this process.

(5) Check vehicle to ensure that no compound has been applied to prohibited areas (see CAUTION, paragraph 5-4).

NOTE

Plugging of access holes may be delayed until after vehicle inspection, if inspection occurs immediately after rustproofing. If inspection is delayed too long, rustproofing compound may drip from access holes.

b. Plug access holes.

5-5. Rustproofing Inspection.

a. Check the vehicle to ensure that all areas requiring rustproofing compound have been properly and completely coated.

5-6. Component Installa

Install all components that were removed in paragraph 5-1 of this chapter (see TM 9-2320-266-20 and TM 9-2320-266-34.)
CHAPTER 6
3/4-TON AND 1 1/4-TON TRUCK: M1008, M1008A1, M1009, M1010, M1028, AND M1031

Section I. PRELIMINARY PROCEDURES

6-1. Component Removal.

CAUTION

Electrical leads to light assemblies do not have to be disconnected. Tape the light assembly to body or cab to prevent damage.

NOTE

On cargo trucks with body mounting equipment or kits (troop seats, cargo covers, etc.) remove equipment as required to allow for access to rustproofing points.

a. Prior to rustproofing, place all windows in closed position. The following components must be removed for access (see TM 9-2320-289-20 and TM 9-2320-289-34):

(1) Vent covers and controls (both sides).
(2) Spare tire and mounting bracket (all except M1009).
(3) Fuel tank shield (all except M1009).
(4) Lower front fender mudguards left and right.
(5) Both sunvisors.
(6) Floormat.
 (a) After removing floormat, discard padding and apply nonslip flight deck compound (NSN 5610-00-782-5556 l-gal. kit).
 (b) Install rubber mat without padding.
(7) Both taillight assemblies.
(8) Rubber plugs in doors. Remove and retain 1-inch (2.5 cm) plug.
(9) Rubber plugs in doorjamb. Remove and discard 1/2-inch (1.3 cm) plug.
(10) Remove tailgate glass cover (M 1009 only).

b. All 3/4- and 1 1/4-Ton Trucks discussed in this chapter are illustrated in Figure 6-1.

Figure 6-1. M1008, M1008A1, M1009, M1010, M1028, and M1031 Series Trucks.
Section II. DRILLING AND CLEANING PROCEDURES

6-2. Drilling Procedures.

NOTE

Unless otherwise indicated, all holes should be sight drilled and should be 1/2 inch (1.3 cm) in diameter,

a. General. Refer to paragraph 3-15 for general drilling instructions.

b. Drilling Top Radiator Core Support (see Figure 6-2). Enlarge existing holes A and B to 1/2 inch (1.3 cm).

c. Drilling Tailgate. (Model M1008) (see Figure 6-3). Enlarge existing holes A, B, C, and D to 1/2 inch (1.3 cm).

d. Drilling Front of Cargo Bed (see Figure 6-4). Drill two holes A and B in front of cargo bed. Holes are to be drilled 12 inches (30.5 cm) in from side of cargo bed.
e. Drilling Rear of Doors (Typical) (see Figure 6-5). Drill one hole A in each door 4 inches (10.2 cm) above top of door trim. Existing hole B can be used for lower door area.

f. Drilling Front Lower Door and Doorjamb (Typical) (see Figure 6-6). Enlarge existing holes A in doorjamb to 1/2 inch (1.3 cm). Holes B are to be sight drilled at bottom front of doors.

h. Drilling Body Support Channels (see Figure 6-8). Drill two holes A and B. Holes C, D, E, F, G, H, and I are existing holes which must be enlarged to 1/2 inch (1.3 cm). All other access holes are large enough to receive tools.

i. Drilling Top of Doorjamb (see Figure 6-3). Drill a total of four holes in the top of both doorjamb.

(1) Drill holes A 12 inches (30.5 cm) from top of doorjamb openings.

(2) Drill holes B 16 inches (40.6 cm) from holes A. Holes A and B cover all models.

(3) Model M 1009 only. Drill a total of four holes. Drill hole C even with rubber bumper, both doorjams. Drill holes D and E 9 inches (22.9 cm) from seatbelt bolt.

NOTE

In Figure 6-8, holes E, F, G, H, and I do not apply to the M1 009.
6-3. Cleaning Procedures.

WARNING

When cleaning, do not discharge water in excess of 600 psi (4137 kPa) from high pressure equipment. Serious injury could result. Eye protection must be worn to prevent injury.

CAUTION

Steam cleaning will not be used.

a. Wash the interior of frame rail structures through drilled access holes to remove mud, dirt, etc. Use of high pressure washer will facilitate this process. Observe water flushed through the rails to determine when the structure is clean.

b. Allow at least four hours for vehicle drying. Additional drying time may be required if unfavorable weather conditions exist. Compressed air may be used to speed up the drying process.

c. Prime and paint those areas showing bare metal. Allow painted areas time to dry before rustproofing.
Section III. RUSTPROOFING PROCEDURES

6-4. Rustproofing Procedures.

CAUTION

Do not spray any portion of moving components, transmission, transfer case, cylinders, pumps, valves, prop shaft, exhaust system, rubber bump stops, brakedrums, backing plates, parking brake linkage, engine linkage, or air intake systems. Cover all areas with paper where necessary.

NOTE

- There are areas where a 10 mil wet film thickness cannot be attained without wasting a large amount of compound. In those areas, complete coverage of the surface area is necessary at whatever thickness is obtainable.
- For rustproofing procedures of specific body items refer to Figure 6-10 through Figure 6-27.

a. Dry Film Thickness Requirements. A five mil dry film thickness is required for adequate rustproofing protection. A 10 mil wet film thickness is required to obtain minimum five mil dry film thickness. If needed, the vehicle can be resprayed to reach proper thickness.

b. Spraying Pressure. The rustproofing compound should be applied to sheet metal structural members in even coats. An acceptable starting point to maintain an even spray pattern, is 40 psi (276 kPa), but adjustments may have to be made due to temperature changes and differences in rustproofing compound.

c. Rustproofing Underbody (M1008 Series) (see Figure 6-10).

(1) Insert flexible tool as far as possible into the ends of the body support channels A through F, and cargo bed channels G through R. Slowly withdraw tool while spraying.

(2) Use short rigid tool to complete spraying of all accessible areas of the underbody.

(3) Use 90 degree short tool to spray all those areas that were inaccessible with the cone spray tool, such as framerails, bed side walls, and wheel lips and wells.

(4) Use short rigid tool to spray the bottom side of the fuel tank and both sides of the fuel tank shield. Also spray all accessible areas of the radiator cowling underside.

d. Rustproofing Underbody (M1009) (see Figure 6-11).

(1) Insert flexible tool as far as possible into the ends of body support channels A through F and all existing holes in the cargo bed channels. Slowly withdraw tool while spraying.

(2) Use short rigid tool to spray all accessible areas of the underbody.
(3) Use 90 degree short tool to spray all those areas that were inaccessible with the cone spray tool, such as framerails, bed rails, side walls, and wheel lips and wells.

(4) Use 90 degree short tool to spray the bottom side of the fuel tank and both sides of the fuel tank shield.

e. Rustproofing Cargo Body Walls (see Figure 6-12).

(1) Insert 90 degree long tool through openings in inner walls and spray in all directions in area A.

(2) Insert 90 degree long tool into hole in taillight openings and spray in all directions in area B.

f. Rustproofing Cowl (see Figure 6-13).

(1) Insert flexible tool into the open seam of channel A of the cowl and spray in all directions.

(2) Use 90 degree short tool to completely spray areas missed by the flexible tool.

g. Rustproofing Between Cab and Cargo Body (M1008, M1008A1, and M1028) (see Figure 6-14).

Insert long rigid tool between the bed and cab area A, and spray in all directions.
h. Rustproofing Engine Compartment (see Figure 6-15).

(1) Use short rigid tool to completely spray the following areas of the engine compartment:
 (a) Front of cab firewall.
 (b) Rear of the radiator wall.
 (c) The inside, bottom front, and bottom rear of the fender.

 NOTE
 Ensure that all seams, welds and corners of the engine compartment are covered.

(2) Use flexible tool to spray all areas inaccessible with the short rigid tool.

i. Rustproofing Hood (see Figure 6-16).

(1) Insert flexible tool into the hood box channel A and B as far as possible, then slowly withdraw tool while spraying.

(2) Use short rigid tool to completely spray the inner panel of the hood.

(3) Use 90 degree short tool to spray in all existing holes of the inner hood and all areas missed by the flexible tool.
TB 43-0213

j. Rustproofing Radiator Core Support (see Figure 6-17).

(1) Insert flexible tool into the ends of the top radiator core support holes A and B then slowly withdraw tool while spraying.

(2) Insert 90 degree short tool into holes A and B and spray areas missed by the flexible tool.

k. Rustproofing Fenders (see Figure 6-18).

(1) Insert flexible tool as far as possible in all existing holes in the inner panel of the front fenders then withdraw tool while spraying in all directions. Be sure to spray between fender reinforcement and fender skin.

(2) Use 90 degree short tool to completely spray all areas missed by the flexible tool.

l. Rustproofing Rocker Panels and Rear Cab Channels (see Figure 6-19).

(1) Insert flexible tool into hole A as far as possible into the rocker panel, then spray in all directions while slowly withdrawing tool.

(2) Use short rigid tool to spray the under side of the rocker panel B.

m. Rustproofing Tailgate (M1008) (see Figure 6-20). Insert 90 degree long tool into tailgate holes A, B, C, and D as far as possible, then spray in all directions while slowly withdrawing tool.
n. Rustproofing Cargo Bed (M1008) (see Figure 6-21).

(1) Insert flexible tool into holes A and B of the front top cargo bed as far as possible, then spray in all directions while withdrawing tool.

(2) Insert short rigid tool into holes C through H and spray in all directions while slowly withdrawing tool.

o. Rustproofing Cargo Body (M1009) (see Figure 6-22). Insert 90 degree short tool into holes A and B as far as possible, then spray in all directions while slowly withdrawing tool.

p. Rustproofing Tailgate (M1009) (see Figure 6-23).

NOTE

Place window in the full up position and support the glass.

(1) Insert 90 degree short tool into areas A of the inner tailgate panel and spray in all directions while slowly withdrawing tool.

(2) Spray the inner side of the tailgate access cover with the same tool.

q. Rustproofing Lower Doorjamb, Doors, and Vent Openings (see Figure 6-24).

(1) Insert flexible tool into hole A of the front doorjamb and spray in all directions.

(2) Insert 90 degree short tool into the vent openings B and spray in all directions.

(3) Insert 90 degree short tool into hole C of the front lower side of the door and spray door hinge side.

(4) Use 90 degree long tool to spray the vent window frame side while slowly withdrawing tool.

(5) Insert short rigid tool into holes A and B and spray all areas missed by the 90 degree tool.
r. Rustproofing Roof and Doorjamb Top (see Figure 6-25).

(1) Insert flexible tool into holes A and B of the doorjambs and spray in all directions.

(2) Insert flexible tool into holes Canal D of the sunvisor openings as far as possible, then spray in all directions while slowly withdrawing tool.

(3) Insert 90 degree short tool into the sunvisor hole openings C and D as far as possible and spray in all directions. Do this step twice: once to the left and then to the right.

(4) Insert short rigid tool into all openings and holes in the roof and doorjambs and spray all areas missed by the 90 degree tool.

(5) For M1009 only. Insert flexible tool into hole E of the doorjambs and holes F and G of the roof, then spray in all directions.

(6) Plug holes A through G.

s. Rustproofing Rear Window Frame (see Figure 6-26).

(1) Insert flexible tool into the existing openings A through E of the rear window frame and spray while slowly withdrawing tool.

(2) Insert 90 degree short tool up and into the rear window frame channel and spray while slowly withdrawing tool.
6-5. Rustproofing Inspection.

a. Check the vehicle to ensure that all areas requiring rustproofing compound have been properly and completely covered.

 (1) Check seams, welds, corners, and boxed areas to ensure that they are adequately covered.

 (2) Check wet film thickness with a wet film thickness gage (see Figure 6-28). A wet film thickness of 10 rolls is required. In areas where a wet film thickness of 10 rolls cannot be obtained or where wet thickness cannot be measured, inspect for completeness of coverage.

 (3) Check all drain holes to ensure that they are open.

 (4) Check all inspection holes and drilled access holes to ensure that compound coverage is adequate.

Figure 6-26. Rustproofing Rear Window Frame.

1. Rustproofing Rear and Top of Door (see Figure 6-27).

 (1) Insert 90 degree long tool into the 1-inch (2.5 cm) hole A in bottom rear of door. Rotate spraying tool while slowly withdrawing from hole, spraying the lower 15 inches (38.1 cm) of the interior of the door.

 (2) Insert flexible tool into hole B of the upper door channel and direct the tool up through the channel as far as possible, then spray while slowly withdrawing tool.

 (3) Plug holes.
(5) Check vehicle to ensure that no compound has been applied to prohibited areas (see CAUTION, paragraph 6-4).

NOTE
Plugging of access holes may be delayed until after vehicle inspection, if inspection occurs immediately after rustproofing. If inspection is delayed too long, rustproofing compound may drip from access holes.

b. Plug access holes.

6-6. Component Installation.

Install all components that were removed in paragraph 6-1 (see TM 9-2320-289-20 and TM 9-2320-289-34).
Section I. PRELIMINARY PROCEDURES

7-1. Component Removal.

a. Figure 7-1 provides a reference illustration of typical 2 1/2 and 5-Ton cabs.

b. Due to the wide variety of special applications for 2 1/2- and 5-Ton vehicles, only the cabs will be discussed in this chapter. Typical variations of these trucks will be covered in succeeding chapters.

NOTE

- Removal instructions for 2 1/2 Ton Series Trucks are in TM 9-2320-209-20 and TM 9-2320-209-34.

- Removal instructions for 5-Ton Series Trucks are in TM 9-2320-211-20 and TM 9-2320-211-34.

C. Prior to rustproofing, the following components must be removed to provide access:

1. Raise windows to a fully closed position,

2. Remove the following components:

 a. Cab canvas.

 b. Side door panels.

 c. Seats.

 d. Center tunnel.

 e. Access cover to master cylinder.

Figure 7-1. Typical 2 1/2 Ton and 5-Ton Trucks.
Section II. DRILLING AND CLEANING PROCEDURES

7-2. Drilling Procedures.

NOTE

Unless otherwise indicated, all holes should be sight drilled and should be 1/2 inch (1.3 cm) in diameter.

a. General. Refer to paragraph 3-15 for general drilling instructions.

b. Drilling Cab Doors (see Figure 7-2).

(1) Enlarge two holes C and D to 1/2 inch (1.3 cm) in the bottom of each door. Holes B and E are existing holes.

c. Drilling Cab Sills (see Figure 7-3). Drill three holes A, B, and C in each cab sill. Hole A is drilled 10 inches (25.4 cm) forward of hole B. Hole C is drilled 10 inches (25.4 cm) to the rear of hole B.

d. Drilling Windshield Frame (see Figure 7-4). Drill a total of 10 holes in the windshield frame.

(1) Drill three holes A, one at the top of each vertical channel. At a distance of 18 inches (45.7 cm) to the left and the right of the center hole A, drill two more holes A.
(2) Fold the windshield down and drill five holes B on the bottom of the frame. Holes B are located to correspond with holes A.

e. Drilling Cab Floor (see Figure 7-5). Drill seven holes in cab floor:

(1) Drill holes D and C where support channels intersect. Penetrate two metal thicknesses.

(2) Holes F and G are drilled 9 inches (22.9 cm) forward of holes D and C. Penetrate two metal thicknesses.

(3) Hole E is drilled 7 inches (17.8 cm) to the left of hole D. Penetrate two metal thicknesses.

(4) Hole A is drilled 4 inches (10.2 cm) to the right of hole C. Penetrate two metal thicknesses.

(5) Hole B is drilled 9 1/2 inches (24.1 cm) to the right of hole C. Penetrate two metal thicknesses.

(6) Holes H and I are drilled 18 inches (45.8 cm) from the rear of holes C and D.

7-3. Cleaning Procedures.

WARNING

When cleaning, water may be discharged in excess of 1200 psi (8274 kPa) from high pressure water equipment. Serious injury could result. Eye protection must be worn to prevent injury.

CAUTION

Steam cleaning will not be used.

a. Wash interior of framerail structures through drilled access holes to remove mud, dirt, and rust. Use of a high pressure washer will facilitate this process. Observe the water flushed through the rails to determine when the structure is clean.

b. Allow at least four hours for vehicle drying. Additional drying time may be required if unfavorable weather conditions exist. Compressed air may be used to speed up the drying process.

c. Prime and paint those areas showing bare metal. Allow painted areas time to dry before rustproofing.
Section III. RUSTPROOFING PROCEDURES

7-4. Rustproofing Procedures.

CAUTION

Do not spray any portion of moving components, transmission, transfer case, cylinders, pumps, valves, prop shaft, exhaust system, rubber bump stops, brake-drums, brake backing plates, parking brake linkage, shift linkage, tires, electrical components, engine linkage, or air intake systems. Cover all areas with paper where necessary.

NOTE

- There are areas where a 10 mil wet film thickness cannot be obtained without wasting a large amount of compound. In those areas, complete coverage of the surface area is necessary at whatever thickness is obtainable.

- For rustproofing procedures of specific cab body items, refer to Figure 7-6 through Figure 7-9.

a. Dry Film Thickness Requirements. A five mil dry film thickness is required for adequate rustproofing protection. A 10 mil wet film thickness is required to obtain a minimum five mil dry film thickness. If needed, the vehicle can be resprayed to reach proper thickness.

b. Spraying Pressure. The rustproofing compound should be applied to sheet metal and structural members in even coats. Spraying pressure should be as low as possible while maintaining an even spray pattern. An acceptable starting point is 40 psi (276 kPa), but adjustments may have to be made due to temperature changes and differences in rustproofing compound. Using too much pressure will waste compound by causing overspray and excessively thick coatings.

c. Rustproofing Cab Sills and Doors (see Figure 7-6).

(1) Insert 90 degree short tool into holes A, B, and C in the top of cab sill and spray in all directions.

(2) Use flexible 60 degree tool to apply rustproofing compound to the lower 15 inches (38.1 cm) of the inner panel of each door. Ensure that all drain holes in the bottom of the door are open after applying compound.

(3) Use 45 degree tool to apply rustproofing compound to seams and complete interior rear surface of cab floor.

(4) Coat entire underside of the cab floor using short rigid tool.

(5) Plug all holes except H.

7-4
e. Rustproofing Windshield Frame (see Figure 7-8).

(1) Insert long rigid tool as far as it will go into each of the windshield vertical frame channels A. It may require two passes to ensure complete coverage.

(2) Lower windshield to a flat position to expose holes D, then insert 90 degree short tool in each hole of the horizontal frame channels and spray in all directions. Repeat the same procedure for holes C.

(3) Plug all holes A and C. Leave holes B and D open for drainage.

f. Rustproofing Cowl, Hood and Dash Panel (see Figure 7-9).

(1) Use 45 degree tool to apply rustproofing compound to the complete cowl exterior seam. Completely coat the upper cowl panel and left- and right-hand interior cowl side panels through the fresh air panels.
(2) Apply rustproofing compound to entire dash panel (engine side only). Do not coat the dash panel on the interior of the cab.

(3) Coat the complete underside of hood, hood side panels, and front end.

Figure 7-9. Rustproofing Cowl, Hood, and Dash Panel.

7-5. Rustproofing Inspection.

a. Check the vehicle to ensure that all areas requiring rustproofing compound have been properly and completely coated.

(1) Check seams, welds, corners, and boxed areas to ensure that they are adequately coated.

(2) Check wet film thickness with a wet film thickness gage (see Figure 7-10). A wet film thickness of 10 mils is required. In areas where a wet film thickness of 10 mils cannot be obtained or where thickness cannot be measured, inspect for completeness of coverage.

(3) Check all drain holes to ensure that they are open.

Figure 7-10. Film Thickness Gage.
(4) Check all inspection and drilled access holes to ensure that compound coverage is adequate (see CAUTION, paragraph 7-4).

NOTE

Plugging of access holes may be delayed until after vehicle inspection, if inspection occurs immediately after rustproofing. If inspection is delayed too long, rustproofing compound may drip from access holes.

b. Plug access holes,

7-6. Component Installation.

NOTE

- Installation instructions for 2 1/2-Ton Series Trucks are in TM 9-2320-209-20 and TM 9-2320-209-34.
- Installation instructions for 5-Ton Series Trucks are in TM 9-2320-211-20 and TM 9-2320-211-34.

Install all components that were removed in paragraph 7-1.
CHAPTER 8
2 1/2-TON CARGO BODY TRUCKS

Section I. PRELIMINARY PROCEDURES

8-1. Component Removal.

Remove cargo canvas and bows from cargo body trucks, as shown in Figure 8-1 if equipped (see TM 9-2320-209-20).

![Figure 8-1. 2 1/2 Ton Cargo Body Trucks.]

Section II. DRILLING AND CLEANING PROCEDURES

8-2. Drilling Procedures.

NOTE

Unless otherwise indicated, all holes should be sight drilled and should be 1/2 inch (1.3 cm) in diameter.

a. General. Refer to paragraph 3-15 for general drilling instructions.

b. Drilling Tailgate (M35A2C) (see Figure 8-2). Drill four 1/2-inch (1.3 cm) holes A in the tailgate center stiffener. Holes are drilled 17 1/2 inches (44.5 cm) from one of two holes, B, which already exist.

NOTE

The M35A2C is the only cargo body configuration which requires drilling of the tailgate.

WARNING
When cleaning items, water may be discharged in excess of 1200 psi (8274 kPa) from high pressure water equipment. Serious injury could result. Eye protection must be worn to prevent injury.

CAUTION
Steam cleaning will not be used.

a. Wash interior of framerail structures through drilled access holes to remove mud, dirt, and rust. Use of a high pressure washer will facilitate this process. Observe the water flushed through the rails to determine when the structure is clean.

b. Allow at least four hours for vehicle drying. Additional drying time may be required if unfavorable weather conditions exist. Compressed air may be used to speed up the drying process.

c. Paint and prime those areas showing bare metal. Allow painted areas time to dry before rustproofing.

8-4. Rustproofing Procedures.

CAUTION
Do not spray any portion of moving components, transmission, transfer case, cylinders, pumps, valves, prop shaft, exhaust system, rubber bump stops, brakedrums–brake backing plates, parking brake linkage–shaft linkage, tires, electrical components, engine linkages, or air intake systems. Cover all areas with paper where necessary.

NOTE
- There are areas where a 10 mil wet film thickness cannot be obtained without wasting a large amount of compound. In those areas, complete coverage of the surface area is necessary at whatever thickness is obtainable.
- For rustproofing procedures of specific cargo body items, refer to Figure 8-3 and Figure 8-4.

a. Dry Film Thickness Requirements. A five mil dry film thickness is required for adequate rustproofing.
protection. A 10 mil wet film thickness is required to obtain a minimum five mil dry film thickness. If needed, the vehicle can be resprayed to reach proper thickness.

b. Spraying Pressure. The rustproofing compound should be applied to sheet metal and structural members in even coats. Spraying pressure should be as low as possible while maintaining an even spray pattern. An acceptable starting point is 40 psi (276 kPa), but adjustments may have to be made due to temperature changes and differences in rustproofing compound. Using too much pressure will waste compound by causing overspray and excessively thick coatings.

c. Rustproofing Tailgate (M35A2C) (see Figure 8-3). Insert 90 degree short tool into tailgate holes A and B and spray in all directions. Plug holes.

d. Rustproofing Cargo Body (see Figure 8-4).

(1) Insert long rigid tool into each stake pocket. Spray while slowly withdrawing tool. Two passes may be required to complete coverage of each pocket.

(2) Use 90 degree short tool to spray the interior surfaces of the rubrail (underneath the ledge), on sides, front, and tailgate.

(3) Use flexible tool to completely cover underbody of cargo bed.

Figure 8-3. Rustproofing Tailgate (M35A2C).

Figure 8-4. Rustproofing Cargo Body,
8-5. **Rustproofing Inspection.**

a. Check the vehicle to ensure that all areas requiring rustproofing compound have been properly and completely coated.

 (1) Check seams, welds, corners, and boxed areas to ensure that they are adequately coated.

 (2) Check wet film thickness with a wet film thickness gage (see Figure 8-5). A wet film thickness of 10 mils is required. In areas where a wet film thickness of 10 mils cannot be obtained or where thickness cannot be measured, inspect for completeness of coverage.

 (3) Check all drain holes to ensure that they are open.

 (4) Check all inspection and drilled access holes to ensure that compound coverage is adequate.

 NOTE

 Plugging of access holes may be delayed until after vehicle inspection, if inspection occurs immediately after rustproofing. If inspection is delayed too long, rustproofing compound may drip from access holes.

b. Plug access holes.

8-6. **Component Installation.**

Install all the components that were removed in paragraph 8-1 (see TM 9-2320-209-20), Figure 8-5. **Film Thickness Gage.**

Figure 8-5. Film Thickness Gage.

TA504789
CHAPTER 9
2 1/2-TON TRUCKS: DUMP BODY AND TAILGATE

Section I. PRELIMINARY PROCEDURES

 a. [Figure 9-1] provides a reference illustration for the 2 1/2Ton Dump Truck.
 b. Before beginning any rustproofing procedures, remove the handles from the tailgate (see TM 9-2320-209-20).

![Figure 9-1. 2 1/2-Ton Dump Truck (M342A2),](TA504859)

Section II. DRILLING AND CLEANING PROCEDURES

 a. General. Refer to paragraph 3-15 for general drilling instructions.
 b. Drilling Cab Protector Braces (see [Figure 9-2]).

 (1) Raise the dump body enough to gain access to the underside of the cab protector.

 (2) Drill two holes A in cab protector braces from the underside. Holes are located by measuring 20 1/2 inches (52.1 cm) from the sides and 17 inches (43.2 cm) from the front.
c. Drilling Tailgate Hinge Rod Stiffener (see Figure 9-3). Drill four holes A along the bottom side of the tailgate hinge rod stiffener. The first hole is drilled 8 1/2 inches (21.6 cm) from either end. The other three holes are drilled 18 inches (45.7 cm) apart.

d. Drilling Center Horizontal Stiffener (see Figure 9-4). Drill three holes A in center horizontal stiffener. The first hole is drilled 15 inches (38.1 cm) from either edge. The remaining two holes are drilled 18 inches (45.7 cm) apart.

e. Drilling Upper Horizontal Stiffener (see Figure 9-4). Drill one hole B in the underside of the upper horizontal stiffener. Hole is centered between four holes C which already exist.

f. Drilling Vertical Stiffeners (see Figure 9-4). Drill one hole D in each vertical tailgate stiffener. Holes are drilled just above the hinge rod stiffener.

g. Drilling Top Side Rail (see Figure 9-5).

1. Drill eight holes A in the underside of each top side rail. The holes are located 3 inches (7.6 cm) to the left and right of the stake pocket gussets.

2. Using a cutting torch, cut a 1 1/2-inch (3.8 cm) radius at the bottom of each stake pocket gusset. The radii are to be cut on both sides of each gusset.

h. Drilling Underside of Side Lower Rail (Dump Body) (see Figure 9-6). Six holes A should be enlarged to 1 1/2 inches (3.8 cm) using a cutting torch.

WARNING

When cleaning, water may be discharged in excess of 1200 psi (8274 kPa) from high pressure water equipment. Serious injury could result. Eye protection must be worn to prevent injury.

CAUTION

Steam cleaning will not be used.

a. Wash the interior of structures through drilled access holes to remove mud, dirt, and rust. Use of a high pressure washer will facilitate this operation. Observe the water flushed through the rails to determine if it is clean.

b. Allow at least four hours for vehicle drying. Additional drying time may be required if unfavorable
weather conditions exist. Compressed air may be used to speed up the drying process.

c. Prime and paint those areas showing bare metal. Allow painted areas time to dry before rustproofing.

Section III. RUSTPROOFING PROCEDURES

9-4. Rustproofing Procedures.

CAUTION

Do not spray any portion of moving components, transmission, transfer case, cylinders, pumps, valves, prop shaft, exhaust system, rubber bump stops, brake-drums, brake backing plates, parking brake linkage, shift linkage, tires, electrical components, engine linkages, or air intake systems. Cover all areas with paper where necessary.

NOTE

● There are areas where a 10 mil wet film thickness cannot be obtained without wasting a large amount of compound. In those areas, complete coverage of the surface area is necessary at whatever thickness is obtainable.

● For rustproofing procedures of specific dump body and tailgate items, refer to Figure 9-6 through Figure 9-9

a. Dry Film Thickness Requirements. A five mil dry film thickness is required for adequate rustproofing protection. A 10 mil wet film thickness is required to obtain a minimum five mil dry film thickness. If needed, the vehicle can be resprayed to reach proper thickness.

b. Spraying Pressure. The rustproofing compound should be applied to sheet metal and structural members in even coats. Spraying pressure should be as low as possible while maintaining an even spray pattern. An acceptable starting point is 40 psi (276 kPa), but adjustments may have to be made due to temperature changes and differences in rustproofing compound. Using too much pressure will waste compound by causing overspray and excessively thick coatings.

c. Rustproofing Underbody (see Figure 9-6).

(1) Insert long rigid tool in holes A as far as it will go through the bottom side of the lower side rail to coat stake pocket gussets. Withdraw tool slowly while applying rustproofing compound.

(2) Use short rigid tool to completely cover the underbody of the dump vehicles, including open access surfaces to side, cross, and longitudinal sills.

d. Rustproofing Cab Protector Braces (see Figure 9-7). Insert 90 degree short tool into holes A of the cab protector upper braces and spray in all directions.

Figure 9-7. Rustproofing Cab Protector Braces.
e. Rustproofing Tailgate (see Figure 9-8). Insert 90 degree short tool into holes A (vertical tailgate stiffeners), B (tailgate hinge rod channel), C (center horizontal stiffener), and D (upper horizontal stiffener). Spray in all directions.

f. Rustproofing Stake Pockets and Upper Side Rails (see Figure 9-9).

1) Insert 90 degree short tool into holes A and spray in all directions.

2) Insert long rigid tool into the base of each stake pocket B. Spray while slowly withdrawing tool.

9-5. Rustproofing Inspection.

a. Check the vehicle to ensure that all areas requiring rustproofing compound have been properly and completely coated.

1. Check seams, welds, corners, and boxed areas to ensure that they are adequately coated.

2. Check wet film thickness with a wet film thickness gage (see Figure 9-10). A wet film thickness of 10 mils is required. In areas where a wet film thickness of 10 mils cannot be obtained or where thickness cannot be measured, inspect for completeness of coverage.

3. Check all drain holes to ensure that they are open.

4. Check all inspection holes and drilled access holes to ensure that compound coverage is adequate. Use of a high intensity inspection light will enhance this process.

5. Check vehicle to ensure that no compound has been applied to prohibited areas (see CAUTION, paragraph 9-4).
NOTE

Plugging of access holes may be delayed until after vehicle inspection, if inspection occurs immediately after rustproofing. If inspection is delayed too long, rustproofing compound may drip from access holes.

b. Plug all access holes.

9-6. Component Installation.

Install tailgate handles (see TM 9-2320-209-20).
CHAPTER 10
2 1/2-TON TRUCKS: WATER TANKERS

Section I. DRILLING AND CLEANING PROCEDURES

10-1. Drilling Procedures.

NOTE

- Figure 10-1 provides a reference illustration for the 2 1/2-Ton Water Tanker.

- Unless otherwise indicated, all holes should be sight drilled and should be 1/2 inch (1.3 cm) in diameter.

a. General. Refer to paragraph 3-15 for general drilling instructions.

b. Drilling Superstructure (see Figure 10-2). Drill 10 holes A in bottom reinforcement structures. These should begin approximately 2 1/2 inches (6.4 cm) from the left end, and be spaced about 18 inches (45.7 cm) apart. There are two holes drilled at each interval. One is 1 inch (2.5 cm) from the front edge, and one is 1 inch (2.5 cm) from the rear edge.

c. Drilling Bottom Center Supports (see Figure 10-2). Drill one hole B in each bottom center support. The hole is drilled 14 inches (35.6 cm) from the outer end of each support.

Figure 10-1. M50A2 Water Tanker.
10-2. Cleaning Procedures.

WARNING
When cleaning, water may be discharged in excess of 1200 psi (8274 kPa) from high pressure water equipment. Serious injury could result. Eye protection must be worn to prevent injury.

CAUTION
Steam cleaning will not be used.

a. Wash the interior of structures through drilled access holes to remove mud, dirt, and rust. Use of a high pressure washer will facilitate this operation. Observe the water flushed through the rails to determine if it is clean.

b. Allow at least four hours for vehicle drying. Additional drying time may be required if unfavorable weather conditions exist. Compressed air may be used to speed up the drying process.

c. Prime and paint those areas showing bare metal. Allow painted areas time to dry before rustproofing.
10-3. Rustproofing Procedures.

CAUTION

Do not spray any portion of moving components, transmission, transfer case, cylinders, pumps, valves, prop shaft, exhaust system, rubber bump stops, brake-drums, brake backing plates, parking brake linkage, shift linkage, tires, electrical components, engine linkages, or air intake systems. Cover all areas with paper where necessary.

NOTE

- There are areas where a 10 mil wet film thickness cannot be obtained without wasting a large amount of compound. In those areas, complete coverage of the surface area is necessary at whatever thickness is obtainable.
- For rustproofing procedures of specific tanker body items, refer to Figure 10-3 and Figure 10-4.

a. Dry Film Thickness Requirements. A five mil dry film thickness is required for adequate rustproofing protection. A 10 mil wet film thickness is required to obtain a minimum five mil dry film thickness. If needed, the vehicle can be resprayed to reach proper thickness.

b. Spraying Pressure. The rustproofing compound should be applied to sheet metal and structural members in even coats. Spraying pressure should be as low as possible while maintaining an even spray pattern. An acceptable starting point is 40 psi (276 kPa), but adjustments may have to be made, due to temperature changes and differences in rustproofing compound. Using too much pressure will waste compound by causing overspray and excessively thick coatings.

c. Rustproofing Underbody (see Figure 10-3).

(1) Insert 90 degree short tool in holes A and spray in all directions to coat the entire interior surface of the center supports.

(2) Insert the same tool into holes B and spray in all directions.

(3) Use short rigid tool to completely cover the underbody including all open access areas.

Figure 10-3. Rustproofing Underbody,
d. **Rustproofing Stake Pockets (see Figure 10-4).** Insert the long rigid tool to the base of stake pockets A and withdraw slowly while coating the entire surface.

e. Check vehicle to ensure that no compound has been applied to prohibited areas (see **CAUTION, paragraph 10-3**).

10-4. Rustproofing Inspection.

Check the vehicle to ensure that all areas requiring rustproofing compound have been properly and completely coated.

a. Check seams, welds, corners, and boxed areas to ensure that they are adequately coated.

b. Check wet film thickness with a wet film thickness gage (see Figure 10-5). A wet film thickness of 10 mils is required. In areas where a wet film thickness of 10 mils cannot be obtained or where thickness cannot be measured, inspect for completeness of coverage.

c. Check all drain holes to ensure that they are open.

d. Check all inspection holes and drilled access holes to ensure that compound coverage is adequate. Use of a high intensity inspection light will enhance this process.
CHAPTER 11
2 1/2-TON TRUCKS: FUEL TANKERS

Section I. DRILLING AND CLEANING PROCEDURES

11-1. Drilling Procedures.

a. General. Refer to paragraph 3-15 for general drilling instructions.

b. Drilling Center Support (see Figure 11-2). Drill one hole A in each bottom center support. The hole is drilled 14 inches (35.6 cm) from the outer end of each support.

NOTE

Figure 11-1 provides a reference illustration for the 2 1/2-Ton Fuel Tanker. Unless otherwise indicated, all holes should be sight drilled and should be 1/2 inch (1.3 cm) in diameter.

Figure 11-1. M49A2C Fuel Tanker.

WARNING

When cleaning, water may be discharged in excess of 1200 psi (8274 kPa) from high pressure water equipment. Serious injury could result. Eye protection must be worn to prevent injury.

CAUTION

Steam cleaning will not be used.

a. Wash the interior of framerail structures through drilled access holes to remove mud, dirt, and rust. Use of a high pressure washer will facilitate this operation. Observe the water flushed through the rails to determine if it is clean.

b. Allow at least four hours for vehicle drying. Additional drying time may be required if unfavorable weather conditions exist. Compressed air may be used to speed up the drying process.

c. Prime and paint those areas showing bare metal. Allow painted areas time to dry before rustproofing.
Section II. RUSTPROOFING PROCEDURES

CAUTION

Do not spray any portion of moving components, transmission, transfer case, cylinders, pumps, valves, prop shaft, exhaust system, rubber bump stops, brakes, brake backing plates, parking brake linkage, shift linkage, tires, electrical components, engine linkages, or air intake systems. Cover all areas with paper where necessary.

NOTE

- There are areas where a 10 mil wet film thickness cannot be obtained without wasting a large amount of compound. In those areas, complete coverage of the surface area is necessary at whatever thickness is obtainable.

- For rustproofing procedures of specific tanker body items, refer to Figure 11-3 and Figure 11-4.

a. Dry Film Thickness Requirements. A five mil dry film thickness is required for adequate rustproofing protection. A 10 mil wet film thickness is required to obtain a minimum five mil dry film thickness. If needed, the vehicle can be resprayed to reach proper thickness.

b. Spraying Pressure. The rustproofing compound should be applied to sheet metal and structural members in even coats. Spraying pressure should be as low as possible while maintaining an even spray pattern. An acceptable starting point is 40 psi (276 kPa), but adjustments may have to be made, due to temperature changes and differences in rustproofing compound. Using too much pressure will waste compound by causing overspray and excessively thick coatings.

c. Rustproofing Underbody (see Figure 11-3).

(1) Insert 90 degree short tool in holes A and coat boxed-in section of center support.

(2) Use short rigid tool to completely cover the underbody, including open access surfaces on side, cross, and longitudinal sills.

d. Rustproofing Stake Pockets (see Figure 11-4). Insert long rigid tool to the base of stake pockets A and withdraw slowly while coating the entire surface.

11-4. Rustproofing Inspection.

Check the vehicle to ensure that all areas requiring rustproofing compound have been properly and completely coated.

a. Check seams, welds, corners, and boxed areas to ensure that they are adequately coated.
b. Check wet film thickness with a wet film thickness gage (see Figure 11-5). A wet film thickness of 10 mils is required. In areas where a wet film thickness of 10 mils cannot be obtained or where thickness cannot be measured, inspect for completeness of coverage.

c. Check all drain holes to ensure that they are open.

d. Check all inspection holes and drilled access holes to ensure that compound coverage is adequate. Use of a high intensity inspection light will enhance this process.

e. Check vehicle to ensure that no compound has been applied to prohibited areas (see CAUTION, paragraph 11-3).
CHAPTER 12
2 1/2-TON TRUCKS: VAN BODY

Section I. CLEANING PROCEDURES

12-1. Cleaning Procedures.

a. This section covers cleaning procedures for typical 2 1/2-Ton van bodies. This section does not cover procedures for expansible van bodies. A typical 2 1/2Ton van body truck is shown in Figure 12-1.

WARNING

When cleaning, water may be discharged in excess of 1200 psi (8274 kPa) from high pressure water equipment. Serious injury could result. Eye protection must be worn to prevent injury.

b. Steam cleaning will not be used.

b. Wash the framerail structures thoroughly to remove mud, dirt, and rust. Use of a high pressure washer will facilitate this operation.

c. Allow at least four hours for vehicle drying. Additional drying time may be required if unfavorable weather conditions exist. Compressed air may be used to speed up the drying process.

d. Prime and paint those areas showing bare metal. Allow painted areas time to dry before rustproofing.

Figure 12-1. 2 1/2-Ton Van Body (Typical).
Section II. RUSTPROOFING PROCEDURES

12-2. Rustproofing Procedures.

CAUTION

Do not spray any portion of moving components, transmission, transfer case, cylinders, pumps, valves, prop shaft, exhaust system, rubber bump stops, brakdrums, brake backing plates, parking brake linkage, shift linkage, tires, electrical components, engine linkages, or air intake systems. Cover all areas with paper where necessary.

NOTE

There are areas where a 10 mil wet film thickness cannot be obtained without wasting a large amount of compound. In those areas, complete coverage of the surface area is necessary at whatever thickness is obtainable.

a. Dry Film Thickness Requirements. A five mil dry film thickness is required for adequate rustproofing protection. A 10 mil wet film thickness is required to obtain a minimum five mil dry film thickness. If needed, the vehicle can be resprayed to reach proper thickness.

b. Spraying Pressure. The rustproofing compound should be applied to sheet metal and structural members in even coats. Spraying pressure should be as low as possible while maintaining an even spray pattern. An acceptable starting point is 40 psi (276 kPa), but adjustments may have to be made, due to temperature changes and differences in rustproofing compound. Using too much pressure will waste compound by causing overspray and excessively thick coatings.

c. Rustproofing Underbody (see Figure 12-2). Use short rigid tool to completely cover the vehicle underbody, including open access surfaces on side, cross, and longitudinal sills.

12-3. Rustproofing Inspection.

Check the vehicle to ensure that all areas requiring rustproofing compound have been properly and completely coated.

a. Check seams, welds, corners, and boxed areas to ensure that they are adequately coated.

Figure 12-2. Rustproofing Underbody.

Figure 12-3. Film Thickness Gage.
d. Check all inspection holes and drilled access holes to ensure that compound coverage is adequate. Use of a high intensity inspection light will enhance this process.

e. Check vehicle to ensure that no compound has been applied to prohibited areas (see CAUTION, paragraph 12-2).
CHAPTER 13
5-TON TRUCKS: CARGO BODY

Section I. PRELIMINARY PROCEDURES

 a. Figure 13-1 provides a reference illustration for 5-Ton Cargo Body Trucks.
 b. Remove cargo canvas and bows from cargo body, if equipped (see TM 9-2320-211-20).

Section II. DRILLING AND CLEANING PROCEDURES

 NOTE
 Unless otherwise indicated, all holes should be sight drilled and should be 1/2 inch (1.3 cm) in diameter.

 a. General. Refer to paragraph 3-15 for general drilling instructions.

 b. Drilling Tailgate (Dropside Only) (see Figure 13-2). Drill four holes A in the tailgate center stiffener. Holes are drilled 17 1/2 inches (44.5 cm) on center. The first hole A is drilled 17 1/2 inches (44.5 cm) from one of the two holes B which already exists.
Holes A in stake pockets may already exist.

c. Drilling Stake Pockets (see Figure 13-3). Drill a 3/4-inch (19 mm) hole in the bottom of the 12 stake pockets.

d. Drilling Underbody (see Figure 13-4). Drill one hole A in cargo body. Hole A should be cented between holes B which already exist.

WARNING

When cleaning, water may be discharged in excess of 1200 psi (8274 kPa) from high pressure water equipment. Serious injury could result. Eye protection must be worn to prevent injury.

CAUTION

Steam cleaning will not be used.

a. Wash the interior of framerail structures through drilled access holes to remove mud, dirt, and rust. Use of a high pressure washer will facilitate this process. Observe the water flushed through the rails to determine when the structure is clean.

b. Allow at least four hours for vehicle drying. Additional drying time may be required if unfavorable weather conditions exist. Compressed air may be used to speed up the drying process.

c. Prime and paint those areas showing bare metal. Allow painted areas time to dry before rustproofing.
Section III. RUSTPROOFING PROCEDURES

13-4. Rustproofing Procedures.

CAUTION

Do not spray any portion of moving components, transmission, transfer case, cylinders, pumps, valves, prop shaft, exhaust system, rubber bump stops, brakedrums, brake backing plates, parking brake linkage, shaft linkage, tires, electrical components, engine linkages, or air intake systems. Cover all areas with paper where necessary.

NOTE

There are areas where a 10 mil wet film thickness cannot be obtained without wasting a large amount of compound. In those areas, complete coverage of the surface area is necessary at whatever thickness is obtainable.

- For rustproofing procedures of specific cargo body items, refer to Figure 13-5 through Figure 13-8.

Dry Film Thickness Requirements. A five mil dry film thickness is required for adequate rustproofing protection. A 10 mil wet film thickness is required to obtain a minimum five mil dry film thickness. If needed, the vehicle can be resprayed to reach proper thickness.

b. Spraying Pressure. The rustproofing compound should be applied to sheet metal and structural members in even coats. Spraying pressure should be as low as possible while maintaining an even spray pattern. An acceptable starting point is 40 psi (276 kPa), but adjustments may have to be made due to temperature changes and differences in rustproofing compound.
Using too much pressure will waste compound by causing overspray and excessively thick coatings.

c. Rustproofing Tailgate (see Figure 13-5). Insert 90 degree short tool into tailgate holes A and B and spray in all directions.

d. Rustproofing Stake Pockets and Rubrail (see Figure 13-6).

 (1) Insert long rigid tool into the base of each stake pocket hole and spray while slowly withdrawing tool.

 (2) Use 90 degree short tool to spray the interior surfaces of the rubrail (underneath the ledge), side, front, and tailgate. Cover these surfaces with an even coat.

e. Rustproofing Front Panel (see Figure 13-7). Insert 90 degree long tool into ends of vertical reinforcements and spray in all directions while slowly withdrawing tool.

f. Rustproofing Underbody (see Figure 13-4).

 (1) Insert 90 degree short rigid tool into holes A and B in cargo body bottom and spray in all directions.

 (2) Use short rigid tool to completely cover the bottom of the cargo body, including the open access surfaces of the side and cross longitudinal sills.

Figure 13-5. Rustproofing Tailgate.

Figure 13-6. Rustproofing Stake Pockets and Rubrail.

Figure 13-7. Rustproofing Front Panel.
13-5. **Rustproofing Inspection.**

Check the vehicle to ensure that all areas requiring rustproofing compound have been properly and completely coated.

a. Check seams, welds, corners, and boxed areas to ensure that they are adequately coated.

b. Check wet film thickness with a wet film thickness gage (see Figure 13-8). A wet film thickness of 10 roils is required. In areas where a wet film thickness of 10 roils cannot be obtained or where thickness cannot be measured, inspect for completeness of coverage.

c. Check all drain holes to ensure that they are open.

d. Check all inspection holes and drilled access holes to ensure that compound coverage is adequate.

e. Check vehicle to ensure that no compound has been applied to prohibited areas (see CAUTION, paragraph 13-4).

13-6. **Component Installation.**

Install cargo canvas and bows, if removed (see TM 9-2320-211-20).
CHAPTER 14
5-TON TRUCKS: DUMP BODY AND TAILGATE

Section I. PRELIMINARY PROCEDURES

14-1. Component Removal.
 a. Figure 14-1 provides a reference illustration for a typical 5-Ton Dump Truck.
 b. Prior to rustproofing, remove handles from the top of the tailgate (see TM 9-2320-211-20).

 Figure 14-1, 5-Ton Dump Truck (M930).

Section II. DRILLING AND CLEANING PROCEDURES

 a. General. Refer to paragraph 3-15 for general drilling instructions.

 NOTE
 Unless otherwise indicated, all holes should be sight drilled and should be 1/2 inch (1.3 cm) in diameter.

 b. Drilling Cab Protector Upper Braces (see Figure 14-2).

 (1) Tilt dump body up enough to gain access to the underside of the cab protector.

 (2) Drill three holes A in the underside of each upper cab protector brace. The first hole is located 10 inches (25.4 cm) from the rear. The second and third holes are located 14 inches (35.6 cm) on center.
NOTE
Steps 3 and 4 are for U.S. Marine Corps applications only.

(3) Drill hole B in the front of each upper cab protector brace.

(4) Drills 1 1/2-inch (3.8 cm) hole A in the rear of each upper cab protector brace (see Figure 14-3).

c. Drilling Cab Protector Cross Reinforcements (see Figure 14-4). Drill five 3/4-inch (19mm) holes A in each cab protector cross reinforcement. The first hole is drilled 7 inches (17.8 cm) from the end. The next four holes are drilled 17 inches (43.2 cm) on center.

d. Drilling Tailgate Hinge Rod Channel (see Figure 14-5). Drill three holes A in tailgate hinge rod channel. One hole should be centered on each section of the channel. All holes should be 15/16 inch (24 mm) from the inside of the tailgate.

e. Drilling Tailgate Center Horizontal Stiffener (see Figure 14-6). Drill five holes A in center horizontal stiffener. The first hole is drilled 5 1/4 inches (13.3 cm) from the end. Four more holes are drilled 18 inches (45.7 cm) on center.

f. Drilling Tailgate Upper Horizontal Stiffener (see Figure 14-7). Drill one hole A in upper horizontal stiffener, 18 inches (45.7 cm) from existing hole B.

g. Drilling Tailgate Vertical Stiffener (see Figure 14-8). Drill one hole A in each vertical stiffener. The holes are drilled 1 1/2 inches (3.8 cm) from the edge and just above the hinge rod channel.
Figure 14-4. Drilling Cab Protector Cross Reinforcements.

Figure 14-5. Drilling Tailgate Hinge Rod Channel.

Figure 14-6. Drilling Tailgate Center Horizontal Stiffener.
Figure 14-7. Drilling Tailgate Upper Horizontal Stiffener.

Figure 14-8. Drilling Tailgate Vertical Stiffener.

h. Drilling and Cutting Tailgate Wings (see Figure 14-9).

(1) Drill a hole A in the top of the tailgate wings.

(2) Cut a 1 1/2-inch (3.8 cm) half-moon radius on tailgate wing.
i. Drilling Top Side Rails (see Figure 14-10), Drill six holes A in the underside of each top side rail on the dump body. The holes are on a centerline that is located 1 5/8 inch (4 cm) from the outer edge of the rail. The holes are centered 1 inch (2.5 cm) to the front and the rear of the stake pocket gussets.

j. Cutting Bottom of Stake Pockets (see Figure 14-11). Using a cutting torch, cut out a 1 1/2-inch (3.8 cm) radius at the bottom of each stake pocket gusset. The radii are to be cut on both sides of the gusset. Repeat steps on opposite side of vehicle.
k. Drilling **Bottom of Dump Body** (see Figure 14-12). Enlarge six existing holes A to a diameter of 1 1/2 inches (3.8 cm).

14-3. Cleaning Procedures.

WARNING

> When cleaning, water may be discharged in excess of 1200 psi (8274 kPa) from high pressure water equipment. Serious injury could result. Eye protection must be worn to prevent injury.

CAUTION

Steam cleaning will not be used.

a. Wash the interior of structures through drilled access holes to remove mud, dirt, and rust. Use of a high pressure washer will facilitate this process. Observe the water flushing through the rails to determine when it is clean.

b. Allow at least four hours for vehicle drying. Additional drying time may be required if unfavorable weather conditions exist. Compressed air may be used to speed up the drying process.

c. Prime and paint those areas showing bare metal. Allow painted areas time to dry before rustproofing.

Figure 14-12. Bottom of Dump Body.
Section III. RUSTPROOFING PROCEDURES

14-4. Rustproofing Procedures.

CAUTION

Do not spray any portion of moving components, transmission, transfer case, cylinders, pumps, valves, prop shaft, exhaust system, rubber bump stops, brake-drums, brake backing plates, parking brake linkage, shaft linkage, tires, electrical components, engine linkages, or air intake systems. Cover all areas with paper where necessary.

NOTE

- There are areas where a 10 mil wet film thickness cannot be obtained without wasting a large amount of compound. In those areas, complete coverage of the surface area is necessary at whatever thickness is obtainable.

- For rustproofing procedures of specific dump body items, refer to Figure 14-12 through Figure 14-17.

a. **Dry Film Thickness Requirements.** A five mil dry film thickness is required for adequate rustproofing protection. A 10 mil wet film thickness is required to obtain a minimum five mil dry film thickness. If needed, the vehicle can be resprayed to reach this thickness.

b. **Spraying Pressure.** The rustproofing compound should be applied to sheet metal and structural members in even coats. Spraying pressure should be as low as possible while maintaining an even spray pattern. An acceptable starting point is 40 psi (276 kPa), but adjustments may have to be made due to temperature changes and differences in rustproofing compound. Using too much pressure will waste compound by causing overspray and excessively thick coatings.

c. **Rustproofing Underbody (see Figure 14-12).** Insert short rigid tool into tailgate underbody holes A. Completely cover the underbody of dump vehicle, including open access surfaces to side, cross, and longitudinal-sills.

d. **Rustproofing Cab Protector (see Figure 14-13).**

(1) Insert 90 degree short tool in holes A and spray in all directions.

(2) Insert 90 degree short tool in holes B of cab protector cross reinforcements and spray in all directions.

(3) Plug holes A (U.S. Marine Corps vehicles only).

e. **Rustproofing Tailgate (see Figure 14-14).**

(1) Insert 90 degree short tool into holes A of vertical tailgate, holes B of tailgate hinge rod channel, holes C of center horizontal stiffener, and holes D of upper horizontal stiffener. Spray in all directions.

(2) Plug holes A, B, and C.

Figure 14-13. Rustproofing Cab Protector.

Figure 14-14. Rustproofing Tailgate.
f. Rustproofing Lower Side Rail (see Figure 14-15). Insert 90 degree short rigid tool into openings A and holes B in lower side rail. Spray in all directions.

g. Rustproofing Side Rail and Stake Pockets (see Figure 14-16).

(1) Insert 90 degree short tool into holes A located in upper side rail. Spray in all directions.

h. Rustproofing Tailgate Wings (see Figure 14-17).

(1) Insert 90 degree short tool into hole A of wing top and spray in all directions.

(2) Plug hole A.
14-5. Rustproofing Inspection.

Check the vehicle to ensure that all areas requiring rustproofing compound have been properly and completely coated.

a. Check seams, welds, corners, and boxed areas to ensure that they are adequately coated.

b. Check wet film thickness with a wet film thickness gage (see Figure 14-18). A wet film thickness of 10 mils is required. In areas where a wet film thickness of 10 mils cannot be obtained or where thickness cannot be measured, inspect for completeness of coverage.

c. Check all drain holes to ensure that they are open.

d. Check all inspection holes and drilled access holes to ensure that compound coverage is adequate.

e. Check vehicle to ensure that no compound has been applied to prohibited areas (see CAUTION, paragraph 14-4).

14-6. Component Installation.

Install handles to top of tailgate (see TM 9-2320-211-20).
15-1. Drilling Procedures.

NOTE

Unless otherwise indicated, all holes should be sight drilled and should be 1/2 inch (1.3 cm) in diameter.

a. General. This section covers drilling and cleaning instructions for typical expansible van bodies. For other van body types, refer to chapter 12. Refer to paragraph 3-15 for general drilling instructions.

b. Drilling Bottom Side Rails (see Figure 15-1). Drill eight holes A in each bottom side rail. The following will provide placement measurements for holes being drilled:

(1) Drill one hole 18 inches (45.7 cm) from the front edge.

(2) Drill three more holes 18 inches (45.7 cm) apart.

(3) Drill one more hole 114 inches (289.6 cm) from front edge.

(4) Drill another hole 18 inches (45.7 cm) from the rear edge of the body.

(5) Drill two more holes 18 inches (45.7 cm) apart.

Figure 15-1. Drilling Bottom Side Rails.

WARNING

When cleaning, water may be discharged in excess of 1200 psi (8274 kPa) from high pressure water equipment. Serious injury could result. Eye protection must be worn to prevent injury.

CAUTION

Steam cleaning will not be used.

- **a.** Wash the interior of structures through drilled access holes to remove mud, dirt, and rust. Use of a high pressure washer will facilitate this operation. Observe the water flushed through the rails to determine when it is clean.

- **b.** Allow at least four hours for vehicle drying. Additional drying time may be required if unfavorable weather conditions exist. Compressed air may be used to speed up the drying process.

- **c.** Prime and paint those areas showing bare metal. Allow painted areas time to dry before rustproofing.

Section II. RUSTPROOFING PROCEDURES

CAUTION

Do not spray any portion of moving components, transmission, transfer case, cylinders, pumps, valves, prop shaft, exhaust system, rubber bump stops, brakeldums, brake backing plates, parking brake linkage, shift linkage, tires, electrical components, engine linkages, or air intake systems. Cover all areas with paper where necessary.

NOTE

- There are areas where a 10 mil wet film thickness cannot be obtained without wasting a large amount of compound. In those areas, complete coverage of the surface area is necessary at whatever thickness is obtainable.

- For rustproofing procedures of specific van body items, refer to Figure 15-2.

- **a.** Dry Film Thickness Requirements. A five mil dry film thickness is required for adequate rustproofing protection. A 10 mil wet film thickness is required to obtain a minimum five mil dry film thickness. If needed, the vehicle can be resprayed to reach proper thickness.

- **b.** Spraying Pressure. The rustproofing compound should be applied to sheet metal and structural members in even coats. Spraying pressure should be as low as possible while maintaining an even spray pattern. An acceptable starting point is 40 psi (276 kPa), but adjustments may have to be made due to temperature changes and differences in rustproofing compound. Using too much pressure will waste compound by causing overspray and excessively thick coatings.
c. Rustproofing Van Underbody,

(1) Insert 90 degree short tool into holes A of side rails and spray in all directions.

(2) Use short rigid tool to completely cover the underbody of van, including open access surfaces to side, cross, and longitudinal sills.

15-4. Rustproofing Inspection.

Check the vehicle to ensure that all areas requiring rustproofing compound have been properly and completely coated.

a. Check seams, welds, corners, and boxed areas to ensure that they are adequately coated,

b. Check wet film thickness with a wet film thickness gage (see Figure 15-3). A wet film thickness of 10 mils is required. In areas where a wet film thickness of 10 mils cannot be obtained or where thickness cannot be measured, inspect for completeness of coverage.

c. Check all drain holes to ensure that they are open.

d. Check all inspection holes and drilled access holes to ensure that compound coverage is adequate,

Use of a high intensity inspection light will enhance this process.

e. Check vehicle to ensure that no compound has been applied to prohibited areas (see CAUTION, paragraph 15-3).

Figure 15-3. Film Thickness Gage
CHAPTER 16
5-TON TRUCKS: WRECKER BODY

Section I. DRILLING AND CLEANING PROCEDURES

16-1. Drilling Procedures.

NOTE

The 5-Ton Wrecker discussed in this chapter is illustrated in Figure 16-1.

a. General. Refer to paragraph 3-15 for general drilling instructions.

b. Drilling Underbody (see Figure 16-2). Drill one 1/2-inch (1.3 cm) hole A in each side support. Hole should be drilled 18 inches (45.7 cm) from the outer end of the support. Holes B already exist.

16-2. Cleaning Procedures.

WARNING

When cleaning, water may be discharged in excess of 1200 psi (8274 kPa) from high pressure water equipment. Serious injury could result. Eye protection must be worn to prevent injury.

CAUTION

Steam cleaning will not be used.

a. Wash the interior of structures through drilled access holes to remove mud, dirt, and rust. Use of high pressure washer will facilitate this operation. Observe the water flushed through the rails to determine when it is clean.

b. Allow at least four hours for vehicle drying. Additional drying time may be required if unfavorable weather conditions exist. Compressed air may be used to speed up the drying process.

c. Prime and paint those areas showing bare metal. Allow painted areas time to dry before rustproofing.
Section II. RUSTPROOFING PROCEDURES

CAUTION

Do not spray any portion of moving components, transmission, transfer case, cylinders, pumps, valves, prop shaft, exhaust system, rubber bump stops, brake-drums, brake backing plates, parking brake linkage, shift linkage, tires, electrical components, engine linkages, or air intake systems. Cover all areas with paper where necessary.

NOTE

- There are areas where a 10 mil wet film thickness cannot be obtained without wasting a large amount of compound. In those areas, complete coverage of the surface area is necessary at whatever thickness is obtainable.

- For rustproofing procedures of specific wrecker body items, refer to Figure 16-3 and Figure 16-4.

 a. Dry Film Thickness Requirements. A five mil dry film thickness is required for adequate rustproofing protection. A 10 mil wet film thickness is required to obtain a minimum five mil dry film thickness. If needed, the vehicle can be resprayed to reach this thickness.

 b. Spraying Pressure. The rustproofing compound should be applied to sheet metal and structural members in even coats. Spraying pressure should be as low as possible while maintaining an even spray pattern. An acceptable starting point is 40 psi (276 kPa), but adjustments may have to be made due to temperature changes and differences in rustproofing compound.
Using too much pressure will waste compound by causing overspray and excessively thick coatings.

c. Rustproofing Underbody (see Figure 16-3).

(1) Insert 90 degree short tool into holes A and B of side supports and spray in all directions.

(2) Use short rigid tool to completely cover the underbody of the wrecker, including open access surfaces to side, cross, and longitudinal sills.

d. Rustproofing Stake Pockets (see Figure 16-4).
Insert long rigid tool into base of stake pockets A and spray in all directions as tool is withdrawn.

16-4. Rustproofing Inspection.

Check the vehicle to ensure that all areas requiring rustproofing compound have been properly and completely coated.

a. Check seams, welds, corners, and boxed areas to ensure that they are adequately coated.

b. Check wet film thickness with a wet film thickness gage (see Figure 16-5). A wet film thickness of 10 mils is required. In areas where a wet film thickness of 10 mils cannot be obtained or where thickness cannot be measured, inspect for completeness of coverage.

c. Check all drain holes to ensure that they are open.
d. Check all inspection holes and drilled access holes to ensure that compound coverage is adequate. Use of a high intensity inspection light will enhance this process.

e. Check vehicle to ensure that no compound has been applied to prohibited areas (see CAUTION, paragraph 16-3).

Figure 16-5. Film Thickness Gage.
CHAPTER 17
M911 SERIES TRACTOR

Section I. PRELIMINARY PROCEDURES

17-1. Component Removal.
 a. The M911 Series Tractor discussed in this chapter is illustrated in Figure 17-1.
 b. Prior to rustproofing, remove the following components from the M911 Series Tractor (see TM 9-2320-270-20):
 (1) Cab headline panel.
 (2) Steel door trim panels.
 (3) Batteries.
 (4) Side engine panels.

Section II. DRILLING AND CLEANING PROCEDURES

 a. General. Refer to paragraph 3-15 for general drilling instructions.
 b. Drilling Front Cowl (see Figure 17-2). Drill two holes A in the top and the side of the cowl. Holes should be sight drilled. Repeat for other side.
 c. Drilling Rear Cab Braces (see Figure 17-3). Drill four holes A in cab braces on each side. Holes should be sight drilled.

WARNING

When cleaning, water may be discharged in excess of 1200 psi (8274 kPa) from high pressure water equipment. Serious injury could result. Eye protection must be worn to prevent injury.

CAUTION

Steam cleaning will not be used.

17-4. Rustproofing Procedures.

CAUTION

Do not spray any portion of moving components, transmission, transfer case, cylinders, pumps, valves, prop shaft, exhaust system, rubber bump stops, brakeldums, brake backing plates, parking brake linkage, shift linkage, tires, electrical components, engine linkages, or air intake systems. Cover all areas with paper where necessary.

NOTE

- There are areas where a 10 mil wet film thickness cannot be obtained without wasting a large amount of compound. In those areas, complete coverage of the surface area is necessary at whatever thickness is obtainable.
- For rustproofing procedures of specific tractor items, refer to Figure 17-4 through Figure 17-12.

a. **Dry Film Thickness Requirements.** A five mil dry film thickness is required for adequate rustproofing pro-
tection. A 10 mil wet film thickness is required to obtain a minimum five mil dry film thickness. If needed, the vehicle can be resprayed to reach proper thickness.

b. Spraying Pressure. The rustproofing compound should be applied to sheet metal and structural members in even coats. Spraying pressure should be as low as possible while maintaining an even spray pattern. An acceptable starting point is 40 psi (276 kPa), but adjustments may have to be made due to temperature changes and differences in rustproofing compound. Using too much pressure will waste compound by causing overspray and excessively thick coatings.

c. Rustproofing Hood, Grille, and Bumper (see Figure 17-4). Use 90 degree short tool to completely coat the rear side of the grille and radiator brace, the inside of the front bumper, and the inner panel of the hood.

d. Rustproofing Engine Side Panels (see Figure 17-5). Use short rigid tool to completely coat the rear side of engine side panels.

e. Rustproofing Front Fenders (see Figure 17-6).

(1) Insert 90 degree short tool in holes A in front fender supports, then loosen top fender bolts to spray between fenders and supports.

(2) Use the same tool to completely coat the underside of the fender, including all supports.

f. Rustproofing Cowl (see Figure 17-7).

(1) Insert 90 degree short tool into holes A and spray cowl in all directions.
(2) Use the same tool to completely coat the back side of the cowl side panels. Gain access to the cowl side panels by inserting the tool under the dashboard on the inside of the cab and spraying forward to the left, right, up, and down.

g. Rustproofing Roof (see Figure 17-8). Use short rigid tool to completely coat roof inner panel A, including all supports.

h. Rustproofing Lower and Rear Door Frame (see Figure 17-9).

(1) Insert flexible tool into existing opening in the rear pillar as far as possible, then spray in all directions while slowly withdrawing tool.

(2) Use 90 degree short tool to completely coat the underside of the lower door frame.

i. Rustproofing Doors (see Figure 17-10). Insert 90 degree short tool through existing openings in the inside door panel A and completely coat inner panels of doors.

CAUTION

Roll up windows. Do not coat any part of the window mechanisms while spraying.

j. Rustproofing Battery Box (see Figure 17-11). Use the 90 degree short tool with the cone spray tip to coat the interior of the battery box A, including cover.
k. Rustproofing Underbody (Typical) (see Figure 17-12).

(1) Use short rigid tool to completely coat the underbody.

(2) Use 90 degree short tool to coat any areas inaccessible with the straight tool. These areas include frame channels and around rear fender flanges.

17-5. Rustproofing Inspection.

a. Check the vehicle to ensure that all areas requiring rustproofing compound have been properly and completely coated.

(1) Check seams, welds, corners, and boxed areas to ensure that they are adequately coated.

(2) Check wet film thickness with a wet film thickness gage (see Figure 17-13). A wet film thickness of 10 rolls is required. In areas where a wet film thickness of 10 rolls cannot be obtained or where thickness cannot be measured, inspect for completeness of coverage.

![Figure 17-13. Film Thickness Gage.](image)

(3) Check all drain holes to ensure that they are open.

(4) Check all inspection holes and drilled access holes to ensure that compound coverage is adequate. Use of a high intensity inspection light will enhance this process.

(5) Check vehicle to ensure that no compound has been applied to prohibited areas (see CAUTION, paragraph 17-4).

NOTE

Plugging of access holes may be delayed until after vehicle inspection, if inspection occurs immediately after rustproofing. If inspection is delayed too long, rustproofing compound may drip from access holes.

b. Plug access holes.

17-6. Component Installation.

Install all components that were removed in paragraph 17-1 (see TM 9-2320-270-20).
Section I. PRELIMINARY PROCEDURES

18-1. Component Removal.
 a. The M915 Series Tractor discussed in this chapter is illustrated in Figure 18-1.
 b. Prior to rustproofing, remove the following components (see TM 9-2320-273-20):
 (1) Cab headline panel.
 (2) Door trim panels.
 (3) Firewall insulation.

Section II. DRILLING AND CLEANING PROCEDURES

 a. General. Refer to paragraph 3-15 for general drilling instructions.
 b. Drilling Headlamps (see Figure 18-2). Drill two holes A in each headlamp housing.
c. Drilling Inner Fender Braces (see Figure 18-2). Drill four holes B in each inner fender brace.

d. Drilling Door Frames (see Figure 18-3). Drill 10 holes A in each door frame.

WARNING

When cleaning, water may be discharged in excess of 1200 psi (8274 kPa) from high pressure water equipment. Serious injury could result. Eye protection must be worn to prevent injury.

CAUTION

Steam cleaning will not be used.

Section III. RUSTPROOFING PROCEDURES

18-4. Rustproofing Procedures.

CAUTION

Do not spray any portion of moving components, transmission, transfer case, cylinders, pumps, valves, prop shaft, exhaust system, rubber bump stops, brakedrums, brake backing plates, parking brake linkage, shift linkage, tires, electrical components, engine linkages, or air intake systems. Cover all areas with paper where necessary.

NOTE

- There are areas where a 10 mil wet film thickness cannot be obtained without wasting a large amount of compound. In those areas, complete coverage of the surface area is necessary at whatever thickness is obtainable.
- For rustproofing procedures of specific tractor items, refer to Figure 18-4 through Figure 18-9.

a. Dry Film Thickness Requirements. A five mil dry film thickness is required for adequate rustproofing
protection. A 10 mil wet film thickness is required to obtain a minimum five mil dry film thickness. If needed, the vehicle can be resprayed to reach proper thickness.

b. Spraying Pressure. The rustproofing compound should be applied to sheet metal and structural members in even coats. Spraying pressure should be as low as possible while maintaining an even spray pattern. An acceptable starting point is 40 psi (276 kPa), but adjustments may have to be made due to temperature changes and differences in rustproofing compound. Using too much pressure will waste compound by causing overspray and excessively thick coatings.

c. Rustproofing Headlamps and Fenders (see Figure 18-4).

(1) Insert 90 degree short tool into holes A of headlamps and spray in all directions.

(2) Use the same tool to completely cover the underside of the fenders, then insert the tool into fender brace holes B and spray in all directions.

d. Rustproofing Engine Compartment (see Figure 18-5).

(1) Use 90 degree short tool to completely cover the inside of the hood, the radiator brace, and the engine compartment side panels.

(2) Insert flexible short tool into the hood brace ends as far as possible, then spray slowly while withdrawing tool.

(3) Use 90 degree short tool to completely cover the firewall.

Figure 18-4. Rustproofing Headlamps and Fenders.

Figure 18-5. Rustproofing Engine Compartment.
e. Rustproofing Cowl (see Figure 18-6).

(1) Use 90 degree short tool to completely cover the inside area of the cowl vent.

(2) Use short rigid tool to completely cover the inside of the cowl. Gain access from under the instrument panel,

f. Rustproofing Roof (see Figure 18-7).

(1) Insert 90 degree short tool into holes A in the roof panel and spray in all directions.

(2) Use the same tool to completely cover roof boxed sections.

g. Rustproofing Door Frames (see Figure 18-3).

Insert 90 degree short tool into holes A in door frame and spray in all directions. Plug all holes.

h. Rustproofing Doors (see Figure 18-8). Roll window up, then insert 90 degree short tool through existing holes A in inner door panel openings and spray in all directions.

i. Rustproofing Underbody (Typical) (see Figure 18-9).

(1) Use short rigid tool to completely coat the underbody.

(2) Use 90 degree short tool to cover all areas of the underbody that are inaccessible with the short rigid tool. These areas include the inside of frame channels and the body perimeter siderails.

(3) Use the same tool to coat entire rear side of the front bumper.
18-5. Rustproofing Inspection.

a. Check the vehicle to ensure that all areas requiring rustproofing compound have been properly and completely coated.

(1) Check seams, welds, corners, and boxed areas to ensure they are adequately coated.

(2) Check wet film thickness with a wet film thickness gage (see Figure 18-10). A wet film thickness of 10 roils is required. In areas where a wet film thickness of 10 roils cannot be obtained or where thickness cannot be measured, inspect for completeness of coverage.

(3) Check all drain holes to ensure they are open.

(4) Check all inspection holes and drilled access holes to ensure compound coverage is adequate. Use of a high intensity inspection light will enhance this process.

(5) Check vehicle to ensure no compound has been applied to prohibited areas (see CAUTION, paragraph 18-4).

NOTE

Plugging of access holes may be delayed until after vehicle inspection, if inspection occurs immediately after rustproofing. If inspection is delayed too long, rustproofing compound may drip from access holes.

b. Plug access holes.

18-6. Component Installation.

Install all components that were removed in paragraph 18-1 (see TM 9-2320-273-20).
CHAPTER 19
M977, M978, M983, M984, AND M985 SERIES TRUCKS (HEMTT)

Section I. PRELIMINARY PROCEDURES

a. The HEMTT Trucks discussed in this chapter are illustrated in Figure 19-1.

b. Raise door windows to fully closed position. Prior to rustproofing, the following components must be removed for access (see TM 9-2320-279-10 and TM 9-2320-279-34):

 (1) Door panels access covers,
 (2) Domelight.

c. M977 and M985 Series Cargo Bodies. Remove cargo canvas and bows, if equipped (see TM 9-2320-279-10).

d. M978, M983 and M984 Truck Bodies. There are no requirements for component removal on the bodies of these vehicles.

![Figure 19-1. HEMTT Vehicles.](TA504929)

Section II. DRILLING AND CLEANING PROCEDURES

b. Drilling Doors (Typical) (see Figure 19-2).

 (1) Drill doors if necessary. Six holes A, B, and C may already exist. Drill holes A on inside of door box channel.

 (2) Drill holes B on bottom of door. Holes B on bottom of door must go completely through box channel for drainage.

 (3) Drill holes C as close to edge of door as possible.

a. General. Refer to paragraph 3-15 for general drilling instructions.

NOTE

Unless otherwise indicated, all holes should be sight drilled and should be 1/2 inch (1.3 cm) in diameter.
Figure 19-2. Drilling Doors (Typical).

c. Drilling Door Headers (Typical) (see Figure 19-3). Drill door headers if necessary. Holes A may already exist.

d. Drilling Roof Supports (Typical) (see Figure 19-3). Drill roof supports if necessary. Holes B and C may already exist.

Figure 19-3. Drilling Door Headers and Roof Supports (Typical).

e. Drilling Cab Frame Interior (Front View) (see Figure 19-4). Drill cab frame if necessary. Seven holes A may already exist.

Figure 19-4. Drilling Cab Frame Interior (Front View).

f. Drilling Cab Frame Interior (Rear View) (see Figure 19-5). Drill cab frame if necessary. Eleven holes A and B may already exist.

Figure 19-5. Drilling Cab Frame Interior (Rear View).
g. Drilling Tubular Cargo Side Panels (M984) (see Figure 19-6).

(1) Open cargo side panel.

(2) Drill three holes A on bottom of panels, Holes A may already exist.

(3) Drill two holes B.

h. M977, M978, M983, and M985 Series Bodies, There are no drilling procedures specified for these bodies. Holes are either predrilled or not required.

WARNING

When cleaning, water may be discharged in excess of 1200 psi (8274 kPa) from high pressure water equipment. Serious injury could result. Eye protection must be worn to prevent injury.

CAUTION

Steam cleaning will not be used.

a. Wash the interior of framerail structures through drilled access holes to remove mud, dirt, and rust. Use of a high pressure washer will facilitate this operation. Observe the water flushed through the rails to determine when it is clean.

b. Allow at least four hours for vehicle drying. Additional drying time may be required if unfavorable weather conditions exist. Compressed air may be used to speed up the drying process.

c. Prime and paint those areas showing bare metal. Allow painted areas time to dry before rustproofing.

Section III RUSTPROOFING PROCEDURES

19-4. Rustproofing Procedures.

CAUTION

Do not spray any portion of moving components, transmission, transfer case, cylinders, pumps, valves, prop shaft, exhaust system, rubber bump stops, brakedrums, brake backing plates, parking brake linkage, shift linkage, tires, electrical components, engine linkages, or air intake systems. Cover all areas with paper where necessary.

NOTE

- There are areas where a 10 mil wet film thickness cannot be obtained without wasting a large amount of compound. In those areas, complete coverage of the surface area is necessary at whatever thickness is obtainable.

- For rustproofing procedures of specific vehicle items, refer to Figure 19-7 through Figure 19-14.

 a. Dry Film Thickness Requirements. A five mil dry film thickness is required for adequate rustproofing.
TB 43-0213

A 10 mil wet film thickness is required to obtain a minimum five mil dry film thickness. If needed, the vehicle can be resprayed to reach proper thickness.

b. Spraying Pressure. The rustproofing compound should be applied to sheet metal and structural members in even coats. Spraying pressure should be as low as possible while maintaining an even spray pattern. An acceptable starting point is 40 psi (276 kPa), but adjustments may have to be made due to temperature changes and differences in rustproofing compound. Using too much pressure will waste compound by causing overspray and excessively thick coatings.

c. *Rustproofing Cab Interior (Front View) (see Figure 19-7).*

(1) Insert flexible tool into access holes A of the front box channels as far as it will go, then spray while slowly withdrawing tool. Insert the tool in the opposite direction and repeat the above procedure.

(2) Insert 90 degree short tool in each hole A and B of the front box channels and spray over all areas missed by the flexible tool.

d. Rustproofing Cab Interior (Rear View) (see Figure 19-8).

(1) Insert flexible tool into holes A, C, and D of door box channels as far as it will go, then spray while slowly withdrawing tool.

e. *Rustproofing Doors (Typical) (see Figure 19-9).*

(1) Insert flexible tool into holes A and B of the front box channels as far as it will go, then spray while slowly withdrawing tool. Insert the tool in the opposite direction and repeat the above procedure.

(2) Insert 90 degree short tool in each hole A and B of the front box channels and spray over all areas missed by the flexible tool.
(2) Use 90 degree short tool to spray overall areas missed by flexible tool.

(3) Spray inner door panels, after rolling windows up to a fully closed position. Use a short rigid tool to completely cover the inside of the inner door panel B. Caution should be taken not to spray compound on window mechanism.

(4) Use the short rigid tool to spray the inner side of the door access cover.

f. Rustproofing Roof Center Support and Complete Doorjamb Opening (Typical) (see Figure 19-10).

(1) Insert flexible tool into access hole A in the front doorjamb as far as it will go, then spray while slowly withdrawing tool.

(2) Insert flexible tool into access hole B in the top doorjamb as far as it will go, then spray while slowly withdrawing tool.

(3) Insert flexible tool into access holes C in the roof center support as far as it will go, then spray while slowly withdrawing tool.

g. Rustproofing Engine Cover Support Tubes, Cab Angle Braces and Fenders, Supports and Stiffeners (see Figure 19-11).

(1) Use short rigid tool at cab angle braces to spray the entire underside of the cab floor. Insert the 90 degree short tool in each hole A and spray in each direction.

(2) Insert short rigid tool as far as it will go into each of the supports and stiffener B. It may require two passes to ensure complete coverage.

(3) Use long rigid tool to spray the entire side of the rear fenders C.

(4) (M983 Only). Use the short rigid tool to spray the entire underside of the rear fenders D.

(5) Insert flexible tool as far as it will go into the engine cover support tubes E, then slowly withdraw the tool while spraying.
h. Rustproofing Cargo Body (M977 and M985) (see Figure 19-12).

(1) Use long rigid tool to completely spray the bottom of the cargo body A including the 13 tubular supports.

(2) Use short rigid tool to cover areas missed by the long rigid tool. Also completely cover the underside of the rear fenders B.

(3) Insert 90 degree short rigid tool into covered (unused) stanchions, front and rear headboards C, and spray in all directions.

i. Rustproofing M978 Tanker Body (see Figure 19-13).

(1) Insert short rigid tool into the inside cabinet door mounting rails A and spray all door mounting rails.

(2) Use the same tool to completely spray the underside of the wheelwells B.

j. Rustproofing M984 Recovery Body (see Figure 19-14).

(1) Insert flexible tool into the cargo side panels A and B and spray while slowly withdrawing tool.

(2) Use 90 degree long tool to completely spray the bottom of the cargo bed C.

(3) Use short rigid tool to completely cover the underside of the rear fenders D.
19-5. Rustproofing Inspection.

a. Check the vehicle to ensure that all areas requiring rustproofing compound have been properly and completely coated.

(1) Check seams, welds, corners, and boxed areas to ensure that they are adequately coated.

(2) Check wet film thickness with a wet film thickness gage (see Figure 19-15). A wet film thickness of 10 mils is required. In areas where a wet film thickness of 10 mils cannot be obtained or where thickness cannot be measured, inspect for completeness of coverage.

(3) Check all drain holes to ensure that they are open.

(4) Check all inspection holes and drilled access holes to ensure that compound coverage is adequate.

(5) Check vehicle to ensure that no compound has been applied to prohibited areas (see CAUTION, paragraph 19-4).

NOTE

Plugging of access holes may be delayed until after vehicle inspection, if inspection occurs immediately after rustproofing. If inspection is delayed too long, rustproofing compound may drip from access holes.

b. Plug access holes.

19-6. Compound Installation.

Install all components that were removed in paragraph 19-1 (see TM 9-2320-279-10 and TM 9-2320-279-34).
Section I. PRELIMINARY PROCEDURES

a. The HMMWV Trucks discussed in this chapter are illustrated in Figure 20-1.

b. Prior to rustproofing, the following components must be removed for access, if equipped. (See TM 9-2320-280-20 and TM 9-2320-280-34):

(1). Batteries and Battery Trays
(2). Doors
(3). Soft Top Canvas (M998, M1038, M1035 Models Only)
(4). Engine Air Cannister
(5). Windshield Washer Container
(6). Horn Assembly
(7). Floor Mats and Side Pads
(8). Seats (Except Driver’s Seat for all Models)
(9). Fuel Tank
(10). Pioneer Tool Rack
(11). Artic Winterization Kit (Applicable Models)
(12). Weapon Assembly Tray (Applicable Models)
(13). Blanket Straps (M966, M1036, M1045, M1046 Models)
(14). Headlight Dimmer Switch
(15). Cargo Shell Door Seal Protectors (Applicable Models)
(16). Headlight Shield Deflectors

Figure 20-1. Typical HMMWV Trucks.

NOTE

Unless otherwise indicated, all holes drilled should be sight drilled and should be 1/2 inch (1.3 cm) in diameter.

Drill holes at approximate locations indicated by the black dots.

a. General. Refer to paragraph 3-15 for general drilling instructions.

b. Drilling Underbody (see Figure 20-2).

(1). Drill a 5/16 inch hole in the left and front frame (A and D). Holes should be drilled 6 inches from last bolt on body mount.

(2). Drill a 5/16 inch hole in the left and right rear frame (B and C). Holes should be drilled 8 inches from transmission crossmember mounting bracket.

Figure 20-2. Drilling Underbody.
c. Drilling Tailgate (All Models) (see Figure 20-3). Drill two 1/2 Holes (A and B) on left side of tailgate.

![Figure 20-3. Drilling Tailgate.](image)

d. Drilling Weapon Station Tray Assembly (M996, M1036, M1046, M1025, M1026, M1043 and M1044 Models see Figure 20-4)

(1) Drill two holes D and E in Channel C. Hole D should be 12 inches from the end of the opening in Channel C. Hole E should 12 inches from Hole D.

![Figure 20-4. Drilling Weapon Station Tray Assembly.](image)

20-3. Cleaning Procedures

WARNING

When cleaning, water may be discharged in excess of 1200 psi (8274 kPa) from high pressure water equipment. Eye protection must be worn to prevent injury.

CAUTION

Steam cleaning will not be used.

a. Wash the interior of framerail structures through drilled access holes, to remove mud, dirt, and rust. Use of a high pressure washer will facilitate this operation. Observe the water flushed through the rails to determine when it is clean.

b. Allow at least four hours for vehicle drying. Additional drying time may be required if unfavorable weather conditions exist. Compressed air may be used to speed up the drying process.

c. Prime and paint those areas showing bare metal. Allow painted areas time to dry before rustproofing.
Section III. RUSTPROOFING PROCEDURES

20-4. Rustproofing Procedures.

CAUTION

Do not spray any portion of moving components, transmission transfer case, cylinders, pump, valves, prop shaft, exhaust system, rubber bump stops, brakeldrum, brake backing plates, parking brake linkage, shift linkage, tires, electrical components, engine linkages or air intake systems. Cover all areas with paper and tape as necessary.

NOTE

There are areas where a 10 mil wet film thickness cannot be obtained without wasting a large amount of compound. In those areas, complete coverage of the surface area is necessary at whatever thickness is obtainable.

a. Dry Film Thickness Requirements. A five mil dry film thickness is required for adequate rustproofing protection. A 10 mil wet film thickness is required to obtain a minimum five mil dry thickness. If needed, the vehicle can be resprayed to reach the proper thickness.

b. Spraying Pressure. The rustproofing compound should be applied to sheet metal and structural members in even coats. Spraying pressure should be as low as possible while maintaining an even spay pattern. An acceptable starting point is 40 psi (kPa), but adjustments may have to be made due to temperature changes and differences in rustproofing compound. Using too much pressure will waste the compound by causing overspray and excessively thick coatings.

c. Rustproofing Frame and Underbody (see Figure 20-5).

(1) Insert flexible wand tool into existing framerail hole (A) as far as possible toward the rear of vehicle. Spray in all directions while slowly withdrawing tool.

(2) Insert flexible wand tool into existing framerail hole (B) as far as possible toward rear of the vehicle and spray in all directions while slowly withdrawing tool.

(3) Insert flexible wand tool into existing framerail hole (A) as far as possible toward the front of the vehicle. Spray in all directions while slowly withdrawing tool.

(4) Insert flexible wand tool into existing framerail hole (C) as far as possible toward the front of the vehicle. Spray in all directions while slowly withdrawing tool.

(5) Insert flexible wand tool into existing framerail hole (D) as far as possible toward the front of the vehicle. Spray in all directions while slowly withdrawing flexible wand tool.

(6) Insert flexible wand tool into existing framerail hole (E) as far as possible toward the rear of the vehicle. Spray in all directions while slowly withdrawing tool.

(7) Insert flexible wand tool into existing framerail hole (F) as far as possible toward the rear of the vehicle. Spray in all directions while slowly withdrawing tool.

(8) Insert flexible wand tool into existing framerail hole (E) as far as possible toward the front of the vehicle. Spray in all directions while slowly withdrawing tool.

(9) Insert flexible wand tool into existing framerail hole (G) as far as possible toward the front of the vehicle. Spray in all directions while slowly withdrawing tool.

(10) Insert flexible wand tool into existing framerail hole (H) as far as possible toward the front of the vehicle. Spray in all directions while slowly withdrawing tool.

(11) Use flexible tool to completely cover all exterior underbody surfaces.
d. Body Panel Side Rails (All Models see Figure 20-6).

 (1) Insert flexible wand tool as far as possible toward rear of the vehicle at points (A) on left and right of vehicle. Spray in all directions while slowly withdrawing tool.

 (2) Insert flexible wand tool as far as possible toward front of vehicle at points (B) on left and right of vehicle. Spray in all directions while slowly withdrawing tool.

Figure 20-6. Body Panel Side Rails.

e. Rustproofing Floorboards and Battery Boxes (All Models except Ambulances; see Figure 20-7).

 (1) Using flexible wand tool, spray all floorboards including stowage and battery box tray areas.

f. Rustproofing Tailgate (All Models; see Figure 20-8).

 (1) Insert rigid wand assembly tool into hole A then B as far as possible and spray in all directions. Using directional handle, rotate (in a circular manner) while slowly withdrawing tool.

NOTE

Leave tailgate in horizontal position for 24 hours.

Figure 20-7. Rustproofing Floorboards and Battery Boxes.

Figure 20-8. Rustproofing Tailgate.
g. Rustproofing Cargo Shell Door (M996, M1036, M1046, M1025, M1026, M1043 and M1044 Models see Figure 20-9).

NOTE

Cover Four Latch Mechanisms Before Rustproofing

(1) Insert flexible tool and rustproof through openings A, B, C, D, E, F, and G. Spray in all directions while slowly withdrawing tool.

(2) Insert flexible tool into two channels behind door insulation. Spray in all directions while slowly withdrawing tool.

(3) Spray Cargo Shell Door seal protectors.

h. Rustproofing Roof Seams, Channels and Support Tubes (M996, M1036, M1046, M1025, M1026, M1043 and M1044 Models see Figure 20-10).

CAUTION

Tape Openings in Channels Before Applying Rustproofing Compound

(1) Insert flexible tool into hole A and spray in all directions.
20-5. Rustproofing Inspection.

a. Check the vehicle to ensure that all areas requiring rustproofing compound have been properly and completely covered.

 (1) Check seams, welds, corners and boxed areas to ensure they are adequately covered.

 (2) Check wet film thickness with a wet film thickness gage (see Figure 20-15). A wet film thickness of 10 roils is required. In area where a wet film thickness cannot be obtained or where wet thickness cannot be measured, inspect for completeness of coverage.

 (3) Check all drain holes to ensure that they are open.

 (4) Check all inspection holes and drilled access holes to ensure that compound coverage is adequate.

 (5) Check vehicle to ensure that no compound has been applied to prohibited areas (see CAUTION paragraph 20-4).

 NOTE

 Plugging of access holes may be delayed until after vehicle inspection, if inspection occurs immediately after rustproofing. If inspection is delayed too long, rustproofing compound may drip from access holes.

b. Plug access holes.

20-6. Component Installation.

Install all components that were removed in paragraph 20-1 (see TM 9-2320-280-20 and TM 9-2320-280-34).
CHAPTER 21
1/4-TON TRAILER: M416 SERIES

Section I. CLEANING PROCEDURES

WARNING

When cleaning, water may be discharged in excess of 1200 psi (8274 kPa) from high pressure water equipment. Serious injury could result. Eye protection must be worn to prevent injury.

CAUTION

Steam cleaning will not be used.

WARNING

a. Wash the framerail structures thoroughly to remove mud, dirt, and rust. Use of a high pressure washer will facilitate this operation.

b. Allow at least four hours for vehicle drying. Additional drying time may be required if unfavorable weather conditions exist. Compressed air may be used to speed up the drying process.

c. Prime and paint those areas showing bare metal. Allow painted areas time to dry before rustproofing.

Section II. RUSTPROOFING PROCEDURES

CAUTION

Do not spray any portion of moving components, rubber bump stops, brakedrum, brake backing plates, parking brake linkage, tires, and electrical components. Cover all areas with paper where necessary.

NOTE

There are areas where a 10 mil wet film thickness cannot be obtained without wasting a large amount of compound. In those areas, complete coverage of the surface area is necessary at whatever thickness is obtainable.

a. Dry Film Thickness Requirements. A five mil dry film thickness is required for adequate rustproofing protection. A 10 mil wet film thickness is required to obtain a minimum five mil dry film thickness. If needed, the vehicle can be resprayed to reach proper thickness.

b. Spraying Pressure. The rustproofing compound should be applied to sheet metal and structural members in even coats. Spraying pressure should be as low as possible while maintaining an even spray pattern. An acceptable starting point is 40 psi (276 kPa), but adjustments may have to be made due to temperature changes and differences in rustproofing compound. Using too much pressure will waste compound by causing overspray and excessively thick coatings.

c. Rustproofing Underbody (see Figure 21-1).

(1) Use short rigid tool to completely cover the trailer underbody, including all open areas.

(2) Use 90 degree short tool to completely cover the inside of the trailer fenders.

(3) Insert long rigid tool into the front of the closed section of the drawbar as far as possible, then slowly withdraw tool while spraying.

(4) Use short rigid tool to completely cover the inside portions of all siderails and crossmembers.
21-3. Rustproofing Inspection.

Check the vehicle to ensure that all areas requiring rustproofing compound have been properly and completely coated.

a. Check seams, welds, corners, and boxed areas to ensure that they are adequately coated.

b. Check wet film thickness with a wet film thickness gage (see Figure 21-2). A wet film thickness of 10 roils is required. In areas where a wet film thickness of 10 roils cannot be obtained or where thickness cannot be measured, inspect for completeness of coverage.

c. Check vehicle to ensure that no compound has been applied to prohibited areas (see CAUTION, paragraph 21-2).
CHAPTER 22
3/4-TON TRAILER: MI101 SERIES

Section I. DRILLING AND CLEANING PROCEDURES

22-1. Drilling Procedures.

a. General. Refer to paragraph 3-15 for general drilling instructions.

b. Drilling Frame (see Figure 22-2). Drill three holes A in center framerail. The first hole is drilled in a centered position. The other two holes are drilled 6 inches (15.2 cm) from the outside of the framerails.

NOTE

- Unless otherwise indicated, all holes should be sight drilled and should be 1/2 inch (1.3 cm) in diameter.
- The M101 Series Trailer discussed in this chapter is illustrated in Figure 22-1.
c. Drilling Body Support Channels (see Figure 22-3). Drill six holes A in underbody. Holes are drilled on each end of channels 1, 2, and 5 at a distance of 2 inches (5.1 cm) from the ends. Louver holes to allow easy access to rustproofing tool.

d. Drilling Tailgate (see Figure 22-4). Drill two holes A in each tailgate vertical stiffener. The first hole is drilled 6 inches (15.2 cm) from the top. The second hole is drilled 6 inches (15.2 cm) below the first hole.

22-2. Cleaning Procedures.

WARNING

When cleaning, water may be discharged in excess of 1200 psi (8274 kPa) from high pressure water equipment. Serious injury could result. Eye protection must be worn to prevent injury.

CAUTION

Steam cleaning will not be used.

a. Wash the interior of structures through drilled access holes to remove mud, dirt, and rust. Use of a high pressure washer will facilitate this operation. Observe the water flushed through the rails to determine when it is clean.

b. Allow at least four hours for vehicle drying. Additional drying time may be required if unfavorable weather conditions exist. Compressed air may be used to speed up the drying process.

c. Prime and paint those areas showing bare metal. Allow painted areas time to dry before rustproofing.

![Figure 22-3. Drilling Body Support Channels.](TA504946)

![Figure 22-4. Drilling Tailgate.](TA504947)
Section II. RUSTPROOFING PROCEDURES

CAUTION

Do not spray any portion of moving components, rubber bump stops, brake-drums, brake backing plates, parking brake linkage, tires, or electrical components. Cover all areas with paper where necessary.

NOTE

- There are areas where a 10 mil wet film thickness cannot be obtained without wasting a large amount of compound. In those areas, complete coverage of the surface area is necessary at whatever thickness is obtainable.

- For rustproofing procedures of specific trailer items, refer to Figure 22-5 through Figure 22-8.

a. Dry Film Thickness Requirements. A five mil dry film thickness is required for adequate rustproofing protection. A 10 mil wet film thickness is required to obtain a minimum five mil dry film thickness. If needed, the vehicle can be resprayed to reach proper thickness.

b. Spraying Pressure. The rustproofing compound should be applied to sheet metal and structural members in even coats. Spraying pressure should be as low as possible while maintaining an even spray pattern. An acceptable starting point is 40 psi (276 kPa), but adjustments may have to be made due to temperature changes and differences in rustproofing compound. Using too much pressure will waste compound by causing overspray and excessively thick coatings.

c. Rustproofing Underbody (see Figure 22-5).

(1) Insert 90 degree short tool into center framerail holes A and spray in all directions.

(2) Insert flexible tool into body support channel holes B as far as possible, then withdraw tool slowly while spraying.

(3) Insert flexible tool into both ends of body channels 3 and 4 as far as possible, then withdraw tool slowly while spraying.

(4) Use short rigid tool to cover the entire underbody.

(5) Use 90 degree short tool to cover all inaccessible areas. These areas include under fenders, inside open frame and body channels.

d. Rustproofing Drawbars (see Figure 22-6). Insert flexible tool as far as possible into front of the drawbar openings, then withdraw tool slowly while spraying.
e. Rustproofing Tailgate (see Figure 22-7).

1. Insert 90 degree short tool into vertical stiffener holes A and spray in all directions. Plug holes.

2. Insert flexible tool into hole B on the right and left side of the bottom horizontal stiffener as far as possible, then withdraw tool slowly while spraying.

3. Use the 90 degree short tool to completely cover the underside of the upper horizontal stiffener.

f. Rustproofing Rubrails and Stake Pockets (see Figure 22-8).

1. Insert long rigid tool into the stake pockets as far as possible, then withdraw tool slowly while spraying.

2. Use 90 degree short tool to completely cover the undersides of the rubrails.

22-4. Rustproofing Inspection.

a. Check the vehicle to ensure that all areas requiring rustproofing compound have been properly and completely coated.

1. Check seams, welds, corners, and boxed areas to ensure that they are adequately coated.

Figure 22-7. Rustproofing Tailgate.

Figure 22-8. Rustproofing Rubrails and Stake Pockets.
(2) Check wet film thickness with a wet film thickness gage (see Figure 22-9). A wet film thickness of 10 mils is required. In areas where a wet film thickness of 10 mils cannot be obtained or where thickness cannot be measured, inspect for completeness of coverage.

(3) Check all drain holes to ensure they are open.

(4) Check all inspection holes and drilled access holes to ensure that compound coverage is adequate.

(5) Check vehicle to ensure that no compound has been applied to prohibited areas (see CAUTION, paragraph 22-3).

NOTE
Plugging of access holes may be delayed until after vehicle inspection, if inspection occurs immediately after rustproofing. If inspection is delayed too long, rustproofing compound may drip from access holes.

b. Plug access holes.
CHAPTER 23
1 1/2-TON CARGO TRAILER: M105 SERIES

Section I. DRILLING AND CLEANING PROCEDURES

23-1. Drilling Procedures.

NOTE
- Unless otherwise indicated, all holes should be sight drilled and should be 1/2 inch (1.3 cm) in diameter.
- The M105 Series Cargo Trailer discussed in this chapter is illustrated in Figure 22-1.

a. General. Refer to paragraph 3-15 for general drilling instructions.

b. Drilling Underbody (see Figure 23-2). Drill two holes A in each body support channels 1, 2, 3, 4, 9, 10, and 11. The holes are drilled 6 inches (15.2 cm) from the ends of the channels. Louver holes to allow easy entry of tools.

c. Drilling Tailgate (see Figure 23-3). Drill seven holes in tailgate:

(1) Two holes A are drilled at each end of the upper horizontal stiffener.

(2) Two holes B are drilled at each end of the center horizontal stiffener.

(3) Three holes C are drilled in the bottom of each section of the hinge rod channel.

WARNING

When cleaning, water may be discharged in excess of 1200 psi (8274 kPa) from high pressure water equipment. Serious injury could result. Eye protection must be worn to prevent injury.

CAUTION

Steam cleaning will not be used.

a. Wash the interior of structures through drilled access holes to remove mud, dirt, and rust. Use of a high pressure washer will facilitate this operation. Observe the water flushed through the rails to determine when it is clean.

b. Allow at least four hours for vehicle drying. Additional drying time may be required if unfavorable weather conditions exist. Compressed air may be used to speed up the drying process.

c. Prime and paint those areas showing bare metal. Allow painted areas time to dry before rustproofing.

Section II. RUSTPROOFING PROCEDURES

CAUTION

Do not spray any portion of moving components, rubber bump stops, brake-drums, brake backing plates, parking brake linkage, tires, or electrical components. Cover all areas with paper where necessary.

NOTE

- There are areas where a 10 mil wet film thickness cannot be obtained without wasting a large amount of compound. In those areas, complete coverage of the surface area is necessary at whatever thickness is obtainable.

- For rustproofing procedures of specific cargo trailer items, refer to Figure 23-2 through Figure 23-5

a. Dry Film Thickness Requirements. A five mil dry film thickness is required for adequate rustproofing protection. A 10 mil wet film thickness is required to obtain a minimum five mil dry film thickness. If needed, the vehicle can be resprayed to reach proper thickness.

b. Spraying Pressure. The rustproofing compound should be applied to sheet metal and structural members in even coats. Spraying pressure should be as low as possible while maintaining an even spray pattern. An acceptable starting point is 40 psi (276 kPa), but adjustments may have to be made due to temperature changes and differences in rustproofing compound. Using too much pressure will waste compound by causing overspray and excessively thick coatings.

c. Rustproofing Underbody (see Figure 23-2).

(1) Insert flexible tool as far as possible into all body support channel holes A. Spray while slowly withdrawing the tool.

(2) Insert flexible tool into the ends of body support channels 5, 6, 7, and 8 as far as possible, then slowly withdraw tool while spraying.

(3) Use short rigid tool to completely cover the underbody.

(4) Use the 90 degree short tool with the cone-spray tip to cover all inaccessible areas. These areas include inside of frame channels and fenders.

d. Rustproofing Tailgate (see Figure 23-4)

(1) Insert long rigid tool into holes A and B of the tailgate horizontal stiffeners as far as possible, then slowly withdraw tool while spraying.

(2) Insert 90 degree short tool into holes A and B and spray in all directions.

(3) Insert 90 degree short tool into holes C and spray in all directions.
e. Rustproofing Rubrails and Stake Pockets (see Figure 23-5).

(1) Insert long rigid tool into the stake pockets as far as possible, then withdraw tool slowly while spraying.

(2) Use 90 degree short tool to completely cover the undersides of the rubrails.

Figure 23-4. Rustproofing Tailgate.

Figure 23-5. Rustproofing Rubrails and Stake Pockets.
23-4. Rustproofing Inspection.

a. Check the vehicle to ensure that all areas requiring rustproofing compound have been properly and completely coated.

(1) Check seams, welds, corners, and boxed areas to ensure that they are adequately coated.

(2) Check wet film thickness with a wet film thickness gage (see Figure 23-6). A wet film thickness of 10 mils is required. In areas where a wet film thickness of 10 mils cannot be obtained or where thickness cannot be measured, inspect for completeness of coverage.

(3) Check all drain holes to ensure that they are open.

(4) Check all inspection holes and drilled access holes to ensure that compound coverage is adequate.

(5) Check vehicle to ensure that no compound has been applied to prohibited areas (see CAUTION, paragraph 23-3).

NOTE

Plugging of access holes may be delayed until after vehicle inspection, if inspection occurs immediately after rustproofing. If inspection is delayed too long, rustproofing compound may drip from access holes.

b. Plug access holes.
A-1. **Scope.**

a. This appendix lists all forms, technical manuals, field manuals, technical bulletins, policy statements, regulations, and specifications referenced in this technical bulletin.

b. **Paragraph A-5** provides a list of related specifications not directly cited in the text. This additional list is provided for the information and record of facilities procuring rustproofing services or establishing a rustproofing operation.

c. This appendix excludes specific vehicle TM references found within the individual rustproofing procedures. Such references are for purposes of component removal and installation only. As such, they are not specifically related to the subject matter of this technical bulletin.

A-2. **Forms.**

- Product Quality Deficiency Report .. SF 368
- Recommended Changes to Equipment Technical Publications DA Form 2028-2
- Recommended Changes to Publications and Blank Forms DA Form 2028

A-3. **Related Manuals/Technical Bulletins.**

- Color, Marking, and Camouflage Painting of Military Vehicles, Construction Equipment and Materials Handling Equipment TB 43-0209
- First Aid for Soldiers .. FM 21-11
- Materials Used for Cleaning, Preserving, Abrading, and Cementing
 - Ordinance Materiel and Related Material Including Chemicals TM 9-247
- Metal Body Repair and Related Operations .. FM 43-2
- Painting Instructions for Field Use ... TM 43-0139

A-4. **Policies/Specifications.**

- Corrosion Prevention and Control (CPC) .. AR 750-XXX
- Materiel Deterioration Prevention and Control .. AMC-R-702-24

A-5. **Related Specifications.**

- Rust Arresting Coating (for Treatment of Rusted Metal) MIL-R-10036E
- Rustproofing of Commercial (Non-Tactical) Vehicles FED-STD-297D
APPENDIX B
CORROSION AREAS

B-1. General.

a. This appendix provides recommended vehicle wash intervals based on the severity of the corrosive environment. Shaded maps show major U.S. Army vehicle concentrations in the following locations:

(1) Alaska.
(2) Continental United States (CONUS).
(3) Federal Republic of Germany (FRG).
(4) Hawaii.
(5) Panama.
(6) Puerto Rico.
(7) Republic of Korea (ROK).

b. Intervals listed in Table B-1 are the minimum recommended wash intervals. These intervals should be adjusted with regard to availability of vehicles, personnel, and washrack facilities. Washrack facilities may have seasonal limitations. However, in an effort to control and prevent corrosion, measures must be taken to keep vehicles as free of corrosive contaminants as possible.

B-2. Wash Intervals/Corrosion Areas.

Table B-1 provides recommended vehicle wash intervals based on the severity of the corrosive environment in which they operate. The severity of the corrosion areas are indicated by the maps that follow.

NOTE

Highly corrosive environments, as indicated by the maps, include “severe” and “extremely severe” corrosive regions. A highly corrosive environment does not refer only to areas where the use of road salts or other chemical de-icers is common; high humidity areas, and/or areas with a high concentration of salt in the air are also considered to be highly corrosive.

Table B-1. Recommended Wash Intervals by Severity of Corrosion Area.

<table>
<thead>
<tr>
<th>Ranking</th>
<th>Wash Intervals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extremely Severe*</td>
<td>Every 5 Days</td>
</tr>
<tr>
<td>Severe**</td>
<td>Every 15 Days</td>
</tr>
<tr>
<td>Moderate</td>
<td>Every 25 Days</td>
</tr>
</tbody>
</table>

* Within 0-75 miles of coastal area.
** Beyond 75 miles from coastal area.
C-1. Purpose.

This appendix provides a list in Table C-1 of vehicle components and National stock numbers to aid in the ordering of rust repair parts/repair kits.

<table>
<thead>
<tr>
<th>Vehicle Series</th>
<th>Nomenclature</th>
<th>National Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4-Ton Truck Series</td>
<td>Window, Vehicular</td>
<td>2510-00-176-9146</td>
</tr>
<tr>
<td></td>
<td>Hood, Engine Compartment</td>
<td>2510-00-177-7871</td>
</tr>
<tr>
<td></td>
<td>Frame Section, Structural, Vehicular</td>
<td>2510-01-104-4383</td>
</tr>
<tr>
<td>1 1/4-Ton Gama Goat</td>
<td>Hood, Engine Compartment</td>
<td>2815-01-024-9564</td>
</tr>
<tr>
<td></td>
<td>Tailgate, Vehicle Body</td>
<td>2510-00-088-4125</td>
</tr>
<tr>
<td>1 1/4-Ton M880 Series Trucks</td>
<td>Housing, Front Fender</td>
<td>2510-00-270-6244</td>
</tr>
<tr>
<td></td>
<td>Tailgate, Vehicle Body</td>
<td>2510-01-033-2612</td>
</tr>
<tr>
<td>2 1/2- and 5-Ton Trucks</td>
<td>Cab Assembly, Motor</td>
<td>2510-00-417-2808</td>
</tr>
<tr>
<td></td>
<td>Body, Cargo Truck, Extra Long 20-foot Bed</td>
<td>2510-00-409-7971</td>
</tr>
<tr>
<td></td>
<td>Hood, Engine Compartment</td>
<td>2510-00-983-6917</td>
</tr>
<tr>
<td></td>
<td>Fender, Vehicular (Right)</td>
<td>2510-00-134-4636</td>
</tr>
<tr>
<td></td>
<td>Fender, Vehicular (Left)</td>
<td>2510-00-134-4643</td>
</tr>
<tr>
<td></td>
<td>Door, Vehicular (Right)</td>
<td>2510-00-737-3294</td>
</tr>
<tr>
<td></td>
<td>Door, Vehicular (Left)</td>
<td>2510-00-737-3293</td>
</tr>
<tr>
<td></td>
<td>Panel, Body, Vehicular</td>
<td>2510-00-400-7083</td>
</tr>
<tr>
<td></td>
<td>Panel, Hood, Vehicular</td>
<td>2510-00-208-7535</td>
</tr>
<tr>
<td></td>
<td>Running Board, Vehicular</td>
<td>2510-00-753-9215</td>
</tr>
<tr>
<td>Cargo Trailer Boxes</td>
<td>Body, Cargo Trailer (M416)</td>
<td>2510-01-111-7096</td>
</tr>
<tr>
<td></td>
<td>Body, Cargo Trailer (M101)</td>
<td>2510-01-111-7095</td>
</tr>
<tr>
<td></td>
<td>Body, Cargo Trailer (M105)</td>
<td>2510-01-111-7097</td>
</tr>
</tbody>
</table>

*12 Months Lead Time.
APPENDIX D
RUST REPAIR AND BODY REPLACEMENT INSTRUCTIONS FOR M151, M718, AND M825 SERIES TRUCKS

Section I. FABRICATION OF TURNING FIXTURE AND TURNING VEHICLE OVER

D-1. Construction of Front and Rear Turning Fixtures.
 a. Front Turning Fixture (see Figure D-2). Construct a front turning fixture in accordance with requirements described in Figure D-2.
 b. Rear Turning Fixture (see Figure D-3). Construct a rear turning fixture in accordance with requirements described in Figure D-3.

D-2. Turning Vehicle Over.
 a. Drain fuel tank, then run engine until all fuel in the carburetor and fuel lines has been expended.
 b. Remove fuel tank, windshield, batteries, air filter, spare tire, and soft top. Secure the bow assembly to the body (see TM 9-2320-218-20-1-1).
 c. Drain engine oil, transmission fluid, windshield washer fluid, and differential fluid from both differentials. Tap vent hole in master cylinder. Drain the steering gear box on M151 series vehicles (see TM 9-2320-218-20-1-2).
 d. When applicable, remove the following:
 (1) Extension and litter racks.
 (2) Radio mounts and antennas.
 (3) Machine gun mount.
 (4) Crew seats (M151A1C and M825).
 e. Remove front lifting eyes. Use existing hardware to install front turning fixture (see Figure D-1).
 f. Remove pintle. Use existing hardware to install rear turning fixture (see Figure D-1).
 g. Attach chain falls to lifting eyes of front and rear turning fixtures (see Figure D-1). Raise vehicle a minimum of 36 inches (91.4 cm) measured from floor to bottom of front and rear tires.
 h. Remove retaining bolts from turning fixtures. Position four people at each corner of vehicle and rotate vehicle 180 degrees, bottom side up. Replace retaining bolts in turning fixtures.
 i. Lower vehicle onto two support stands. The front support stand should be approximately 14 inches (35.6 cm) high by 40 inches (101.6 cm) long. The rear support stand should be approximately 20 inches (50.8 cm) high by 56 inches (142.2 cm) long (see Figure D-4).
Figure D-1. Fabricated Turning Fixtures.
Figure D-2. Construction of Front Turning Fixture.
Figure D-3. Construction of Rear Turning Fixture.
Figure D-4. Vehicle Lowered to Stand.

Section II. REPAIRING RUST DAMAGE

Table D-1 lists the underbody caps that are provided with the underbody corrosion repair kit, NSN 2510-01-104-4383 (see Figure D-5).

<table>
<thead>
<tr>
<th>Item</th>
<th>Part No.</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12275196</td>
<td>1</td>
<td>CAP - SILL REAR CROSS CTR</td>
</tr>
<tr>
<td>2</td>
<td>12275197-1</td>
<td>1</td>
<td>CAP ASSY - X/MBR REAR SUSP SUPT FRT-LH</td>
</tr>
<tr>
<td>3</td>
<td>12275197-2</td>
<td>1</td>
<td>CAP ASSY - X/MBR REAR SUSP SUPT FRT-RH</td>
</tr>
<tr>
<td>4</td>
<td>12302501</td>
<td>1</td>
<td>CAP - X/MBR ENGINE REAR SUPT-LH</td>
</tr>
<tr>
<td>5</td>
<td>12302500</td>
<td>1</td>
<td>CAP - X/MBR ENGINE REAR SUPT-RH</td>
</tr>
<tr>
<td>6</td>
<td>12275199</td>
<td>2</td>
<td>CAP - RAIL OUTER CENTER</td>
</tr>
<tr>
<td>7</td>
<td>12275198</td>
<td>1</td>
<td>CAP - X/MBR ENGINE REAR SUPT CENTER</td>
</tr>
<tr>
<td>8</td>
<td>12275194-1</td>
<td>1</td>
<td>EXT CAP X/MBR ENGINE REAR SUPT-LH</td>
</tr>
<tr>
<td>9</td>
<td>12275194-2</td>
<td>1</td>
<td>EXT CAP X/MBR ENGINE REAR SUPT-RH</td>
</tr>
<tr>
<td>10</td>
<td>12275193</td>
<td>2</td>
<td>EXT - RAIL OUTER CENTER TO CAP X/MBR ENGINE REAR SUPT</td>
</tr>
<tr>
<td>11</td>
<td>12275195</td>
<td>2</td>
<td>E</td>
</tr>
</tbody>
</table>
D-4. Underbody Component Removal.

a. Remove rear drive shaft. Then remove rear exhaust system from muffler and underbody (see TM 9-2320-218-20-1-1).

b. Remove two rear control arm bolts (see Figure D-6).

Figure D-5. Caps (M151 Underbody Repair Kit).

Figure D-6. Removing Control Arm Bolts.
D-5. Inspection of Underbody.

NOTE

. Corrosion damage in areas marked X is repairable if caps supplied for those areas cover rusted-out sections, and plug weld holes are located over solid metal.

. To repair rust damaged vehicles in areas marked X, order body replacement kit #B1230250-6 (M151A2 only).

a. Inspect underside of vehicle for corrosion damage (see Figure D-7). Pay special attention to areas marked X, in which corrosion commonly occurs. These areas are critical, high-load areas. Excessive corrosion damage in these areas (corrosion which has penetrated entirely through metal) will render a vehicle nonrepairable.

NOTE

Body patches can be welded to body to accomplish repair. The resultant patch must, however, be as strong or stronger than the original material it is replacing.

b. Probe underside of vehicle with a punch and hammer, Locate badly corroded areas, and determine if vehicle meets required criteria for repair.

Figure D-7. Underbody.
CAUTION

Do not cut into transmission support plate.

c. Use a cutting wheel or torch to remove all crossmember sections from the underbody (see shaded areas in Figure D-8).

d. Repair all rusted-out areas to seal underbody structures and to prepare for installation of underbody caps. Use metal patches and welding techniques described in FM 43-2 and TM 9-237. For MIG welding, use Mill Model 10A, or equivalent, set at 30.5 open circuit volts and 5½-inches (14.0 cm) feed with inch (0.80 mm) diameter wire. When electric arc welding, use -inch (2.4 mm) AWS7018 rods per MIL-E-222000/1,

e. Use a wire wheel or equivalent to remove all paint, rust, and other foreign matter from underbody structure in areas where plug welding and fillet welding will take place.
f. Rust repair to crossmembers requires the use of the underbody corrosion repair kit, NSN 2510-01-104-4384 (see Figure D-9).

![Figure D-9. Corrosion Repair Kit (NSN 2510-01-104-4383).](TA504967)

g. Rust repair to secondary crossmembers requires the use of the body replacement kit, NSN 2510-01-194-4384 (see Figure D-10).

![Figure D-10. Body Replacement Kit (NSN 2510-01-104-4384).](TA504967)

D-6. Underbody Cap Modifications.

a. Cutoff 1 inch (2.5 cm) of material from each end of rear cross sill cap, for M151A2 series vehicle application (see Item 1 of Figure D-5). Place underbody cap over rear cross sill and cut out a recess in cap to accommodate rear tail pipe hanger bracket. Ensure that clearance holes for ear bumperette attaching bolts are centered properly.
b. Modify underbody cap when they are to be installed on M151A2 series vehicles (see Figure D-11).

c. Further modifications to the rear cross sill cap (Item 1 of Figure D-5) and the underbody caps (Items 2 and 3 of Figure D-5) may be necessary to permit proper installation on the M151A1 and M151A2 vehicles (see Figure D-12).

Figure D-11. Modifying Rear Cross Sill Cap and Underbody Cap.

For MIG welding, use Miller Model 10A, or equivalent, set at 30.5 open circuit volts and 5½-inches (14.0 cm) feed with inch (0.80 mm) diameter wire. When electric arc welding, use inch (2.4 mm) AWS7018 rods per MIL-E-2200/1. Use techniques described in FM 43-2 and TM 9-237. Refer to Figure D-13 for examples of fillet and plug welding of underbody caps.
D-8. Installation of Repair Caps.

CAUTION

Repair caps must be installed in exact item number sequence in order to maintain correct flange overlap at all junctions.

a. Position underbody cap over rear sill so that bumperette bolt clearance holes are properly located. Clamp in place and fillet weld as shown (see Item 1 of Figure D-14).

b. Position underbody caps over rear suspension crossmember so all welding surfaces are in contact with underbody surfaces. Plug weld and fillet weld as shown (see Items 2 and 3 of Figure D-14).

c. Position underbody caps over rear engine support crossmember so that inboard end of cap fits as close as possible to main underbody rail. Plug weld and fillet weld as shown (see Items 4 and 5 of Figure D-14).

d. Position two underbody caps over outer center rails. Plug weld and fillet weld as shown (see Item 6 of Figure D-14).

Position underbody cap over the center rear engine support crossmember. Plug weld and fillet weld as shown (see Item 7 of Figure D-14).
f. Position items 8 and 9 of Figure D-14 over rear engine support crossmember and body surface. Adjust flanges as necessary. Clamp in place and fillet weld around the perimeter of all flanges as shown.

g. Position two underbody caps over junction at rear engine support crossmember and outer center rails. Ensure that all welding surfaces are making contact. It may be necessary to use a ball-peen hammer to reform underbody cap to conform to the depression in rear engine support crossmember cap. Clamp in place and fillet weld around perimeter as shown (see Item 10 of Figure D-14).

h. Position two underbody caps over junction at outer center cross rails and rear suspension support crossmembers. Clamp in place and fillet weld around perimeter as shown (see Item 11 of Figure D-14).

i. Clean, prime, and paint all exposed underbody metal surfaces.

a. Install all parts and assemblies removed in paragraph D-4.

b. Reverse the procedures described in paragraph D-2 to upright and lower vehicle to floor.

c. Remove rear turning fixture and install pintle.

d. Remove front turning fixture and install front lifting eyes.

e. Thoroughly clean metal surfaces of gas tank cavity and apply a coat of rustproofing compound as specified in Chapter 4 of this technical bulletin.

f. Install all parts and assemblies removed in paragraph D-2.

g. Replace all fluids removed in paragraph D-2 (see LO 9-2320-218-12).

CAUTION

Follow the starting procedure in step h to eliminate the possibility of “hydrostatic lock.”

h. Before starting engine, remove spark plugs and engage starter for 5-10 seconds. Install spark plugs.

a. Rustproof vehicle (see Chapter 4 of this technical bulletin).

b. Perform preventive maintenance checks and services described in TM 9-2320-218-10 and TM 9-2320-218-20-1-1.

Section III. INSTALLATION INSTRUCTIONS FOR BODY REPLACEMENT KIT (NSN 2510-01-104-4384)

D-11. Purpose.

a. The purpose of these instructions is to provide a procedure for replacing body assemblies in the restoration of M151A2 series vehicles.

b. This procedure is to be used when rust damage is too severe to accomplish restoration by installing the underbody corrosion repair kit, NSN 2520-01-104-4383.

D-12. Materiel Requirements.

a. Table D-2 lists materiel that is provided with the body replacement kit, NSN 2510-01-104-4384. Using the figure and item numbers listed below, refer to TM 9-2320-218-34P for parts identification and location.

b. Serviceable parts and components will be removed from vehicle and installed on the new body. Parts and components not in the body replacement kit that are determined unserviceable will be replaced from stock.
Table D-2. Body Replacement Kit.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Nomenclature</th>
<th>Quantity</th>
<th>Figure</th>
<th>Item</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>11639700</td>
<td>Body</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>Vehicle</td>
</tr>
<tr>
<td>MS35338-47</td>
<td>Washer, lock</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>Engine</td>
</tr>
<tr>
<td>MS90726-88</td>
<td>Screw</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>Mounts</td>
</tr>
<tr>
<td>MS27183-16</td>
<td>Flatwasher</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7703461</td>
<td>Grommet, Supply Line</td>
<td>1</td>
<td>29</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>11681689</td>
<td>Clip, Fuel Line</td>
<td>2</td>
<td>29</td>
<td>18</td>
<td>Fuel Tank</td>
</tr>
<tr>
<td>423437</td>
<td>Screw Assembly</td>
<td>2</td>
<td>29</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>7345121</td>
<td>Grommet, Vent Line</td>
<td>1</td>
<td>29</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>7331368</td>
<td>Gasket</td>
<td>2</td>
<td>33</td>
<td>1</td>
<td>Exhaust</td>
</tr>
<tr>
<td>MS27183-12</td>
<td>Flatwasher</td>
<td>3</td>
<td>33</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>MS51922-9</td>
<td>Nut, Self-Locking</td>
<td>3</td>
<td>33</td>
<td>7</td>
<td>Exhaust System</td>
</tr>
<tr>
<td>MS35751-41</td>
<td>Bolt</td>
<td>3</td>
<td>33</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>7331366</td>
<td>Gasket</td>
<td>3</td>
<td>33</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5704853</td>
<td>Parts Kit, Clamp</td>
<td>1</td>
<td>33</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>8754761</td>
<td>Tubing, Drain</td>
<td>2</td>
<td>60</td>
<td>40</td>
<td>Battery Tray</td>
</tr>
<tr>
<td>MS35489-20</td>
<td>Grommet, Rubber</td>
<td>2</td>
<td>62</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>7331198</td>
<td>Grommet, Rubber</td>
<td>1</td>
<td>62</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>MS51928-10</td>
<td>Clip, Spring</td>
<td>5</td>
<td>62</td>
<td>9*</td>
<td>Front Wiring</td>
</tr>
<tr>
<td>MS51928-5</td>
<td>Clip, Spring</td>
<td>3</td>
<td>62</td>
<td>17*</td>
<td>Harness</td>
</tr>
<tr>
<td>MS21333-102</td>
<td>Clamp, Loop</td>
<td>3</td>
<td>62</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>MS21333-96</td>
<td>Clamp, Loop</td>
<td>1</td>
<td>62</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>MS45904-68</td>
<td>Washer, lock</td>
<td>2</td>
<td>63</td>
<td>28</td>
<td>Front Wiring</td>
</tr>
<tr>
<td>MS90726-102</td>
<td>Screw</td>
<td>4</td>
<td>—</td>
<td>—</td>
<td>Front</td>
</tr>
<tr>
<td>MS90276-86</td>
<td>Screw</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>Suspension</td>
</tr>
<tr>
<td>MS90726-98</td>
<td>Screw</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>Mounting</td>
</tr>
<tr>
<td>MS51988-10</td>
<td>Nut</td>
<td>8</td>
<td>—</td>
<td>—</td>
<td>Hardware</td>
</tr>
<tr>
<td>7046648</td>
<td>Washer</td>
<td>8</td>
<td>(ref to dwg pkg in kit)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>MS35489-19</td>
<td>Grommet, Rubber</td>
<td>4</td>
<td>64</td>
<td>1</td>
<td>Rear Wiring</td>
</tr>
<tr>
<td>MS51928-3</td>
<td>Clip, Spring</td>
<td>8</td>
<td>64</td>
<td>2</td>
<td>Harness</td>
</tr>
<tr>
<td>11599002</td>
<td>Grommet, Plastic</td>
<td>2</td>
<td>64</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MS51928-8</td>
<td>Clip, Spring</td>
<td>3</td>
<td>64</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>MS21333-71</td>
<td>Clamp, Loop</td>
<td>1</td>
<td>64</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>MS35489-8</td>
<td>Grommet, Rubber</td>
<td>1</td>
<td>64</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>7728831</td>
<td>Clamp, Loop</td>
<td>1</td>
<td>64</td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

Do not remove old clips from the firewall. New clips must be used to secure wiring harness to new body.
<table>
<thead>
<tr>
<th>Part No.</th>
<th>Nomenclature</th>
<th>Quantity</th>
<th>Figure</th>
<th>Item</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS35335-33</td>
<td>Washer, lock</td>
<td>5</td>
<td>65</td>
<td>11</td>
<td>Trailer</td>
</tr>
<tr>
<td>MS35206-281</td>
<td>Screw, Machine</td>
<td>4</td>
<td>65</td>
<td>10</td>
<td>Receptacle</td>
</tr>
<tr>
<td>MS51967-2</td>
<td>Nut</td>
<td>1</td>
<td>65</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>MS90726-90</td>
<td>Capscrew</td>
<td>3</td>
<td>76</td>
<td>8</td>
<td>Rear</td>
</tr>
<tr>
<td>MS91988-10</td>
<td>Nut, Self-Locking</td>
<td>3</td>
<td>76</td>
<td>29</td>
<td>Differential</td>
</tr>
<tr>
<td>MS51928-3</td>
<td>Clip, Spring</td>
<td>3</td>
<td>83</td>
<td>8</td>
<td>Brake Line</td>
</tr>
<tr>
<td>MS90727-95</td>
<td>Capscrew</td>
<td>12</td>
<td>88</td>
<td>1</td>
<td>Rear</td>
</tr>
<tr>
<td>MS51988-10</td>
<td>Locknut</td>
<td>12</td>
<td>88</td>
<td>4</td>
<td>Suspension</td>
</tr>
<tr>
<td>MS35692-37</td>
<td>Nut, Slotted</td>
<td>6</td>
<td>91</td>
<td>10</td>
<td>Steering Linkage</td>
</tr>
<tr>
<td>MS90727-98</td>
<td>Capscrew</td>
<td>4</td>
<td>94</td>
<td>3</td>
<td>Front</td>
</tr>
<tr>
<td>MS35338-47</td>
<td>Washer, lock</td>
<td>4</td>
<td>94</td>
<td>5</td>
<td>Bumper</td>
</tr>
<tr>
<td>MS51968-11</td>
<td>Nut</td>
<td>4</td>
<td>94</td>
<td>6</td>
<td>Lifting Eye</td>
</tr>
<tr>
<td>MS90727-94</td>
<td>Screw, Self-Tapping</td>
<td>8</td>
<td>94</td>
<td>15</td>
<td>Rear Bumperette</td>
</tr>
<tr>
<td>MS90725-61</td>
<td>Capscrew</td>
<td>8</td>
<td>96</td>
<td>10</td>
<td>Lifting Eye</td>
</tr>
<tr>
<td>MS51899-7</td>
<td>Locknut</td>
<td>8</td>
<td>96</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>MS51922-9</td>
<td>Locknut</td>
<td>8</td>
<td>103</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>MS90725-33</td>
<td>Bolt, Machine</td>
<td>6</td>
<td>103</td>
<td>28</td>
<td>Windshield</td>
</tr>
<tr>
<td>MS90725-35</td>
<td>Bolt, Machine</td>
<td>2</td>
<td>103</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>7331373</td>
<td>Gasket</td>
<td>1</td>
<td>105</td>
<td>4</td>
<td>Transmission Cover</td>
</tr>
<tr>
<td>7331372</td>
<td>Gasket</td>
<td>1</td>
<td>105</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>5703326</td>
<td>Kit, Boot & Seal</td>
<td>1</td>
<td>KIT</td>
<td></td>
<td>Transmission Cover Plate</td>
</tr>
<tr>
<td>11663067-1</td>
<td>Reflector</td>
<td>5</td>
<td>122</td>
<td>3</td>
<td>Side Reflectors</td>
</tr>
<tr>
<td>11663067</td>
<td>Reflector</td>
<td>2</td>
<td>122</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MS24665-134</td>
<td>Cotter Pin</td>
<td>2</td>
<td>125</td>
<td>2</td>
<td>Windshield</td>
</tr>
<tr>
<td>MS35335-33</td>
<td>Lockwasher</td>
<td>4</td>
<td>125</td>
<td>4</td>
<td>Wiper Motor</td>
</tr>
<tr>
<td>MS35206-280</td>
<td>Screw, Machine</td>
<td>2</td>
<td>125</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>MS90725-6</td>
<td>Capscrew</td>
<td>2</td>
<td>125</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>11644899</td>
<td>Gasket, Motor</td>
<td>1</td>
<td>125</td>
<td>13</td>
<td>Windshield</td>
</tr>
<tr>
<td>MS90725-42</td>
<td>Bolt, Machine</td>
<td>2</td>
<td>125</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>MS45904-73</td>
<td>Washer, lock</td>
<td>2</td>
<td>125</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>11644876</td>
<td>Bushing, Sleeve</td>
<td>2</td>
<td>125</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>MS35489-9</td>
<td>Grommet, Rubber</td>
<td>1</td>
<td>126</td>
<td>7</td>
<td>Windshield Washer</td>
</tr>
<tr>
<td>MS35489-14</td>
<td>Grommet, Rubber</td>
<td>1</td>
<td>126</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

a. Body attaching parts listed in Table D-3 are to be tightened to the torque values given. Refer to Figure D-15 through Figure D-18 for the location of these parts and assemblies.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Number</th>
<th>Items</th>
<th>Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-15</td>
<td>1</td>
<td>Idler arm bracket to frame bolts.</td>
<td>25-30 lb.-ft. (34-41 N(\cdot)m)</td>
</tr>
<tr>
<td>D-15</td>
<td>2</td>
<td>Front suspension ball joint mounting bolts.</td>
<td>35-45 lb.-ft. (47-61 N(\cdot)m)</td>
</tr>
<tr>
<td>D-16</td>
<td>3</td>
<td>Rear suspension bracket to body bolts.</td>
<td>40-55 lb.-ft. (54-75 N(\cdot)m)</td>
</tr>
<tr>
<td>D-16</td>
<td>4</td>
<td>Front and rear propeller shaft bolts.</td>
<td>15-20 lb.-ft. (20-27 N(\cdot)m)</td>
</tr>
<tr>
<td>D-16</td>
<td>5</td>
<td>Rear suspension arm pivot bolts.</td>
<td>65-70 lb.-ft. (88-95 N(\cdot)m)</td>
</tr>
<tr>
<td>D-17</td>
<td>6</td>
<td>Front suspension upper control arm mounting bolts.</td>
<td>70-90 lb.-ft. (95-122 N-m)</td>
</tr>
<tr>
<td>D-17</td>
<td>7</td>
<td>Front suspension crossmember bolt.</td>
<td>27-37 lb.-ft. (37-50 N(\cdot)m)</td>
</tr>
<tr>
<td>D-17</td>
<td>8</td>
<td>Front suspension front lower control arm bolts.</td>
<td>40-55 lb.-ft. (54-75 N(\cdot)m)</td>
</tr>
<tr>
<td>D-17</td>
<td>9</td>
<td>Front suspension rear lower control arm mounting bolts.</td>
<td>45-65 lb.-ft. (61-88 N(\cdot)m)</td>
</tr>
<tr>
<td>D-17</td>
<td>10</td>
<td>Front and rear differential mounting bolts.</td>
<td>30-40 lb.-ft. (41-54 N(\cdot)m)</td>
</tr>
<tr>
<td>D-18</td>
<td>11</td>
<td>Steering gear to column shaft flange coupling bolts.</td>
<td>26-34 lb.-ft. (35-46 N(\cdot)m)</td>
</tr>
<tr>
<td>D-18</td>
<td>12</td>
<td>Pitman arm to steering gear mounting nut.</td>
<td>80-110 lb.-ft. (108-149 N(\cdot)m)</td>
</tr>
<tr>
<td>D-18</td>
<td>13</td>
<td>Steering gear mounting bolts.</td>
<td>24-36 lb.-ft. (33-49 N(\cdot)m)</td>
</tr>
</tbody>
</table>

Figure D-15. Idler Arm and Front Suspension.
Figure D-16. Rear Suspension and Front and Rear Propeller Shaft.

Figure D-17. Front Suspension.
b. Use standard torque values provided in Table D-4 unless otherwise specified in the applicable technical manual or in Table D-3.
Table D-4. Standard Torque Values.

<table>
<thead>
<tr>
<th>USAGE</th>
<th>MUCH USED</th>
<th>MUCH USED</th>
<th>USED AT TIMES</th>
<th>USED AT TIMES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To 1/2–69,000 (4850.7000)</td>
<td>To 3/4 – 120,000 (8436,0000)</td>
<td>To 5/8 – 140,000 (9842.0000)</td>
<td>150,000 (10545.0000)</td>
</tr>
<tr>
<td>CAPSCREW DIAMETER AND MINIMUM TENSILE STRENGTH PSI (KG/SQ CM)</td>
<td>To 3/4 – 64,000 (4499.2000)</td>
<td>To 1–115,000 (8084,5000)</td>
<td>To 3/4 – 133,000 (9349.9000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>To 1-55,000 (3866.5000)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QUALITY OF MATERIAL</th>
<th>INDETERMINATE</th>
<th>MINIMUM COMMERCIAL</th>
<th>MEDIUM COMMERCIAL</th>
<th>BEST COMMERCIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAE GRADE NUMBER</td>
<td>1 or 2</td>
<td>5</td>
<td>6 or 7</td>
<td>8</td>
</tr>
</tbody>
</table>

CAPSCREW HEAD MARKINGS

Manufacturer’s marks may vary. These are all SAE Grade 5 (3-line).

<table>
<thead>
<tr>
<th>CAPSCREW BODY SIZE (INCHES)-(THREAD)</th>
<th>TORQUE FT-LB (N-M)</th>
<th>TORQUE FT-LB (N-M)</th>
<th>TORQUE FT-LB (N-M)</th>
<th>TORQUE FT-LB (N-M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4–20</td>
<td>5 (7)</td>
<td>8 (11)</td>
<td>10 (14)</td>
<td>12 (16)</td>
</tr>
<tr>
<td>-28</td>
<td>6 (8)</td>
<td>10 (14)</td>
<td>19 (26)</td>
<td>24 (33)</td>
</tr>
<tr>
<td>5/16–18</td>
<td>11 (15)</td>
<td>17 (23)</td>
<td>34 (46)</td>
<td>44 (60)</td>
</tr>
<tr>
<td>-24</td>
<td>13 (18)</td>
<td>19 (26)</td>
<td>49 (69)</td>
<td>59 (82)</td>
</tr>
<tr>
<td>3/8–16</td>
<td>18 (24)</td>
<td>31 (42)</td>
<td>55 (75)</td>
<td>64 (91)</td>
</tr>
<tr>
<td>-20</td>
<td>20 (27)</td>
<td>35 (47)</td>
<td>59 (82)</td>
<td>66 (91)</td>
</tr>
<tr>
<td>7/16–14</td>
<td>28 (36)</td>
<td>49 (66)</td>
<td>70 (96)</td>
<td>76 (106)</td>
</tr>
<tr>
<td>-20</td>
<td>30 (41)</td>
<td>55 (75)</td>
<td>78 (106)</td>
<td></td>
</tr>
<tr>
<td>1/2–13</td>
<td>39 (53)</td>
<td>75 (102)</td>
<td>85 (115)</td>
<td>105 (142)</td>
</tr>
<tr>
<td>-20</td>
<td>41 (56)</td>
<td>88 (120)</td>
<td>95 (130)</td>
<td>120 (163)</td>
</tr>
<tr>
<td>9/16–12</td>
<td>51 (69)</td>
<td>110 (149)</td>
<td>120 (163)</td>
<td>155 (210)</td>
</tr>
<tr>
<td>-18</td>
<td>55 (75)</td>
<td>120 (163)</td>
<td>170 (231)</td>
<td></td>
</tr>
<tr>
<td>5/8–11</td>
<td>63 (113)</td>
<td>150 (203)</td>
<td>167 (226)</td>
<td>210 (285)</td>
</tr>
<tr>
<td>-16</td>
<td>95 (129)</td>
<td>170 (231)</td>
<td>240 (325)</td>
<td></td>
</tr>
<tr>
<td>3/4–10</td>
<td>105 (142)</td>
<td>270 (366)</td>
<td>280 (380)</td>
<td>375 (509)</td>
</tr>
<tr>
<td>-16</td>
<td>115 (156)</td>
<td>295 (400)</td>
<td>420 (570)</td>
<td></td>
</tr>
<tr>
<td>7/8–9</td>
<td>150 (217)</td>
<td>395 (536)</td>
<td>440 (597)</td>
<td>605 (820)</td>
</tr>
<tr>
<td>-14</td>
<td>175 (237)</td>
<td>435 (590)</td>
<td>675 (915)</td>
<td></td>
</tr>
<tr>
<td>1–8</td>
<td>225 (319)</td>
<td>500 (800)</td>
<td>660 (895)</td>
<td>910 (1234)</td>
</tr>
<tr>
<td>-14</td>
<td>250 (339)</td>
<td>660 (895)</td>
<td>990 (1342)</td>
<td></td>
</tr>
</tbody>
</table>

CAUTION: Capscrews threaded into aluminum may require reductions in torque of 30% or more, unless inserts are used.

NOTE: Do not use above values in place of those specified in the engine groups of this manual; special attention should be observed in case of SAE Grade 6, 7, and 8 capscrews.

1. Always use the torque values listed above when specific specifications are not available.
2. The above is based on use of clean and dry threads.
3. Reduce torque by 10% when engine oil is used as a lubricant.
4. Reduce torque by 20% if new plated capscrews are used.

a. Remove components of special purpose kits from old body (see TM 9-2320-218-34-1).

b. Remove soft top and bows, windshield and hinges, hood and front grille, data and instruction plates, all reflectors, seat belts, and seat and frame assemblies (see TM 9-2320-218-20-1-1).

c. Position vehicle on four support stands and new body on four support stands (see Figure D-19 and Figure D-20).

d. Drain fuel tank and lines (see TM 9-2320-218-20-1-1).

e. Remove mirrors, wheels, rear shock absorbers, batteries, battery cables, battery box, and transmission cover plate (see TM 9-2320-218-20-1-1).

f. Remove front and rear suspension, propeller shafts, and steering gear and column from old body and install on new body (see TM 9-2320-218-34-1). Tighten all mounting hardware to torque values shown in Table D-3.

g. Remove transmission, shift lever, handbrake assembly, and handbrake lever from old body and install on new body (see TM 9-2320-218-34-1).

h. Remove drive train (engine, transmission, and transfer assembly) from old body and install on new body (see TM 9-2320-218-34-1).

i. Remove exhaust system from old body and install on new body (see TM 9-2320-218-20).

j. Remove instrument panel and switches, accelerator, throttle and choke controls, starter switch and bracket, and all light assemblies from old body and install on new body (see TM 9-2320-218-20-1-1).

k. Remove flasher unit, trailer receptacle, and front and rear wiring harnesses from old body and install on new body (see TM 9-2320-218-20-1-2).
Figure D-20. Positioning Body on Support Stand.

1. Remove clutch pedal, brake pedal, master cylinder, and brake lines from old body and install on new body (see TM 9-2320-218-20-1-1).

m. Remove fuel tank and fuel lines from old body (see TM 9-2320-218-20-1-1).

n. Apply rustproofing compound to fuel tank cavity in new body (see Chapter 4 of this technical bulletin).

o. Install fuel tank and fuel lines on new body (see TM 9-2320-218-20-1-1).

p. Remove all remaining underhood components from old body and install on new body (see TM 9-2320-218-20-1-1).

q. Remove front and rear bumpers, hood latches, grab handle, and fuel can mounting bracket from old body and install on new body (see TM 9-2320-218-20-1-2).

r. Remove all remaining body components from old body and install on new body (see TM 9-2320-218-20-1-2).

s. Install rear shock absorbers, battery box, batteries, battery cables, and transmission cover plate on new body (see TM 9-2320-218-20-1-1).

t. Install front grille and hood, windshield and hinges, seat and frame assemblies, and mirrors on new body (see TM 9-2320-218-20-1-1).

u. Install components of special purpose kits on new body (see TM 9-2320-218-34-1).

v. Rustproof vehicle (see Chapter 4 of this technical bulletin).

w. Paint vehicle (see TM 43-0139).

x. Install all reflectors, data and instruction plates, and wheels (see TM 9-2320-218-20-1-2).

y. Lower vehicle from support stands.
z. Install soft top and bows (see TM 9-2320-218-20-1-2).

aa. Return all unused materiel to stock.

D-15. Preparing Vehicle for Service.

a. Aline front wheels and adjust headlights (see TM 9-2320-218-34-1).

b. Perform the preventive maintenance checks and services described in TM 9-2320-218-10 and TM 9-2320-218-20-1-1.

c. Return vehicle to service.
APPENDIX E
FABRICATED TOOLS

Section I. STRAIGHT-EDGE FLOOR SCRAPER

NOTE
All dimensions given in Section I are in standard units.

E-1. General.

a. After rustproofing a vehicle, the rustproofing compound may drip onto the shop floor creating “pancakes” of compound. The process of removing these can be time consuming, even with powerwash equipment and detergents. The most effective way to clean the shop floor is to scrape, then wash the surface down.

b. The straight-edge floor scraper can also be used on certain vehicles, such as the 5-Ton Tractor Truck. This vehicle has a hitch platform on the underside which may require scraping to ensure proper function.

c. A 1¼-inch putty knife can be found in the standard shop tool kit and a 4-inch putty knife can be obtained from the supply activity. These tools may serve as a suitable alternative or as a supplement to the fabricated scraper.

a. Handle. Use suitable materials or available stock including broken broom handles or worn squeegee handles.

c. Support Arms. Two 8-inch lengths of 1/6 by 7/8-inch steel are required. These can obtained from general stock at the nearest weld shop or by ordering item from supply activity.

d. Screws. Four 1/4-inch screws.

e. Nuts. Four 1/4-inch nuts.

f. Flatwashers. Eight 1/4-inch hole flatwashers.

E-3. Drilling Procedures (See Figure E-1).

WARNING
Drill holes on the flat side of handle to avoid injury or damage to handle.

a. Handle. Cut a flat surface on one side of the wooden handle that will allow for level contact of blade and support arms. After flat surface is cut, drill a 1/4-inch hole A, 1/2-inch from the end of the handle. Drill a second 1/4-inch hole B that is 4 1/2 to 4 5/8 inches from the hole A.

b. Blade. Drill one 1/4-inch hole C in the middle of the blade 3/8-inch from the bottom side. Drill two 1/4-inch holes D on each end of the blade, 9/6 inch from their respective sides and half way between the top and bottom edges.

c. Support Arms. Drill two 1/4-inch holes E in each of the two support arms. Holes should be centered and 9/16 inches away from the ends.
E-4. Assembly Instructions (See Figure E-1).

a. **Support Arms to Handle.** Position one end of both support arms over hole B in handle and install screw, two flatwashers, and nut.

 NOTE
 Center hole C on blade should be positioned so that scraping edge faces outward.

b. **Blade to Handle.** Position center blade hole C over handle hole A and install screw, two flatwashers, and nut.

c. **Support Arms to Blade.** Position free ends of support arms on each side of blade. Install two screws, four flatwashers, and two nuts.

Section II. LOOPED SCRAPER

WARNING
Wear protective gloves to avoid injury during fabrication of looped scraper. Material has sharp edges which may cause serious injury to personnel.

NOTE
All dimensions given in Section II are in standard units.

E-5. **General.**
There are many curved areas underneath a tactical vehicle where a straight-edge scraper or putty knife cannot reach. The looped scraper will work well on both convex and concave curves.
E-6. Materials Required.
 a. 24 inches of metal pallet strapping.
 b. 9-inch piece of 1/8 by 7/8-inch steel plate.
 c. Two 1/4-inch rivets.
 d. Brown paper.
 e. 9-inch piece of split rubber tubing.

 a. Marking. Mark one end of 24-inch strapping “small loop or A”. Mark the other end “large loop or B”.
 b. Bending Loops (see Figure E-2).

 (1) Measure and mark a line 1 inch from the end marked “small loop or A”. Measure and mark another line 5 inches from the first mark. Place a screwdriver shaft over the 1-inch mark and bend the 1-inch portion to a 90 degree angle. Use the same technique to bend the 5-inch portion to a 90 degree angle from the remaining strap.

 (2) Measure and mark a line 1 inch from the end of strapping marked “large loop or B”. Measure and mark another line 8 inches from the first mark. Use a screwdriver shaft to bend to 90 degree angles as in step (1) above.

 c. Shaping Loops (see Figure E-3). Bring folds A and B together on “small loop or A” end. After shaping loop to desired form, secure attaching ends of loop in a suitable vise or tape ends together until ready for drilling. Follow this procedure for “large loop or B” end as well.

Figure E-2. Bending Loops.

Figure E-3. Shaping Loops.
E-8. Drilling Procedures (See Figure E-4).

a. Ensure that inside portion of loop is even and flush. Mark and punch a 1/4--inch hole in the center of the 1-inch portion and punch through to the 9-inch portion. Follow the procedure for the large loop end as well.

b. Drill two 1/4--inch holes in the 9-inch metal plate 3/8 inches from the ends.

![Figure E-4. Drilling Scraper.](TA504983)

a. Position metal plate in 9-inch strapping so that all holes a line. Use a hand pop-rivet tool to rivet the scraper with 1/4-inch rivets.

b. Wrap center portion of looped scraper with 9-inch wide brown paper until it will provide a tight fit for the rubber tubing.

c. Place split rubber tubing over center portion of looped scraper.

d. Continue to shape loop ends to desired form.
The following is an alphabetical list of terms found in this technical bulletin. Many of these terms describe design configurations found on Army vehicles. Others refer to aspects of corrosion discussed in the introductory chapters of this technical bulletin.

“A” Pillar Front windshield pillar at door opening.
Access Plug Plastic or rubber plug used to fill holes in sheet metal.
Acid Rain High concentrations of chemical contaminants in the atmosphere which are driven to earth by natural rainfall. Occurs mostly in heavy industrial areas.
Active Metal Describes a metal, such as iron or steel, that is especially susceptible to corrosion.
Additive A compound added to a fuel or lubricant to prevent corrosion, gum formation, varnishing, sludge, and/or knocking.
Baffle A hidden obstruction, usually made of sheet metal, used as a support in the design of a vehicle, or to prevent water or dirt from entering the area.
Belt Line An imaginary line on a vehicle, usually in reference to a line along the bottom of a vehicle’s window, or up to and including the rubrail of cargo trucks.
Box Section Any area in a vehicle design that is totally or almost totally enclosed.
Chalking The breakdown of an organic coating to a powdery, chalky residue.
Channel In vehicle design, an open support member found as U-shaped or A-shaped half circle cross sections.
Corrosion The process of dissolving or wearing away.
cowl That part of a vehicle located between the front windshield and the rear of the hood.
Crevice Corrosion Corrosion occurring in a crevice formed by two or more sections of same or different metals.
Dogleg The arc-like section of a vehicle’s rear support pillar located in from the rear wheel house.
Doorjamb See Pillar.
Door Skin The outer sheet metal of a door.
Electrolyte A chemical substance which contains electrically charged particles capable of maintaining or holding an electric current.
Exfoliation The breaking away of surface material into flakes or layers.
Eyebrow Slang term for the extension of the front fender over vehicle headlights.
Fender Brace See Fender Support.
Fender Cap The cap at the end of some fender designs used to either finish the fender or to extend it.
Fender Lip | That part of a fender that is curled under at the wheel opening.
Fender Reinforcement | Horizontal strip along the inside of the front fender near the top.
Fender Support | Vertical support and reinforcement at rear of front fender.
Firewall | The forward, lower wall of a vehicle cab. This wall is located above the area of the vehicle operator’s foot controls and extends from fender to fender, and from cowl to floor pan.
Flange | A rim, edge, or collar made of metal and used to strengthen an object, hold it in place, or attach it to another object.
Frameraill | One of the two main lengthwise members that make up the frame of a vehicle.
Front Shield | Shield under the front bumper of a vehicle used to deflect stones.
Galvanic Corrosion | Corrosion usually resulting from differing metals of greater/lesser purity which are in contact with one another. The great variance in metal purity works to polarize the metal. In the presence of moisture, this greater polarity begins to tear down the atomic structure of the weaker of the two metals.
Galvanize | To coat iron with zinc, at time of manufacture, in order to increase the resistance of the iron to rust.
Hat Section | A hat-shaped channel usually found on the underside of a vehicle.
Header Panel | The area above the front grille of some vehicles.
Headlight Bucket | Shield behind headlight to which socket and headlight adjustments are attached.
Headlight Rim | Trim around headlight and adjustment screws.
Hinge Box | The vehicle cab’s support pillar to which the door is hinged.
Hinge Pillow | See Hinge Box
Impact Bars | Reinforcements located inside doors and used to resist impact on the sides.
Inhibitor | Chemical substance or mixture which, when added to a solution, decreases corrosion.
Inorganic Coatings | Coatings (usually paint) applied to a surface by electrical/magnetic means, i.e., electro-deposition. Examples are chrome plating, anodic coatings, conversion coatings, phosphate coatings, and oxide coatings.
Inspection Cover | A cover easily removed in order to allow visual or physical access to an enclosed area of the vehicle.
Local Cell | A localized area on a vehicle where rust is occurring. An area on the vehicle that contains all the elements of rust creation.
Lock striker plate | That area of the cab pillar post where the door lock strikes and latches when the door is closed.
OEM | An automotive term meaning “Original Equipment Manufactured”.
Orifico | The hole in the nozzle of a rustproofing spray wand.
Oxidation | The process of electrons combining with atoms of oxygen.
Pillar
In automotive design, a pillar is any upright support.

Rear Quarter Panel
Panel or area located on the vehicle side, from the rear wheelwell to the end of the vehicle.

Rocker Panel
Part of some vehicle bodies, designed as a distinct assembly, located beneath the doors.

Rubrail
A raised strip running lengthwise on some vehicles such as a cargo truck tailgate. Designed to come in contact with the vehicle when the tailgate is opened. Any rail on the side or rear of a vehicle designed to absorb shock.

Rust
Iron hydroxide, sometimes referred to as “hydrated ferric oxide”.

Rusting
The electro-chemical process by which iron or other metals transform into iron hydroxide or rust.

Shock Tower
The upper reinforcing member to which a shock absorber is bolted.

Sill
Any flat surface or horizontal structure that bears an upright structure, especially the base of a window or threshold of a structured doorway.

Skin
Slang term referring to the outer metal of a vehicle. Sheet metal or “thin skins” refer to all tactical vehicles and trailers/armor. “Thick skins” refer to most combat vehicles.

Skuff Plate
A metal trim cover over a sill panel designed to help resist wear.

Stake Pockets
Rectangular openings to accommodate stakes on some truck beds.

Stress Corrosion Cracking
Cracking of metal as a result of constant structural stress on a corroding area.

Sweep
To move a rustproofing spray tool back and forth across an area while spraying.

Trough
A water control channel usually located at edges of doors, deck lid openings, and the cowl-to-firewall seam.

Undercoating
Applications of a primer coat. Also the application of a tar-like material on the underside of a vehicle to serve as a sound deadener.

Upper Radiator Brace
Brace between the front fenders which supports the upper part of the vehicle’s radiator.

Wand
The tool used to apply rustproofing material.

Weather Sheet
A plastic or oil paper covering that seals out water or dust from interior trim panels.
INDEX

<table>
<thead>
<tr>
<th>Subject</th>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviations</td>
<td>1-7</td>
<td>1-3</td>
</tr>
<tr>
<td>Acid Rain</td>
<td>2-17</td>
<td>2-11</td>
</tr>
</tbody>
</table>

C

Cabson 2 1/2-and 5-Ton Trucks:
- Cleaning Procedures: 7-3 7-3
- Component installation: 7-6 7-7
- Component Removal: 7-1 7-1
- Drilling Procedures: 7-2 7-2
- Rustproofing Inspection: 7-5 7-6
- Rustproofing Procedures: 7-4 7-4

CARC Paints/Rustproofing Policy: 1-16 1-7

Cargo Body on 5-Ton Trucks:
- Cleaning Procedures: 13-3 13-2
- Component installation: 13-6 13-5
- Component Removal: 13-1 13-1
- Drilling Procedures: 13-2 13-1
- Rustproofing Inspection: 13-5 13-5
- Rustproofing Procedures: 13-4 13-3

Cargo Body on 2 1/2-Ton Trucks:
- Cleaning Procedures: 8-3 8-2
- Component installation: 8-6 8-4
- Component Removal: 8-1 8-1
- Drilling Procedures: 8-2 8-1
- Rustproofing inspection: 8-5 8-4
- Rustproofing Procedures: 8-4 8-2

Cleaning Procedures:
- Cabs, 21/2-and 5-Ton Trucks: 7-3 7-3
- Cargo Bodies, 5-Ton Trucks: 13-3 13-2
- Cargo Bodies, 2 1/2-Ton Trucks: 8-3 8-2
- Dump Body, 5-Ton Trucks: 14-3 14-6
- Dump Body, 2 1/2-Ton Trucks: 9-3 9-3
- Expansible Van Body, 5-Ton Trucks: 15-2 15-2
- Fuel Tanker, 2 1/2-Ton Trucks: 11-2 11-2
- Miniseries Cargo Trailer: 22-2 22-2
INDEX (Con’t)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleaning Procedures (Con’t):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M105 Series Cargo Trailer</td>
<td>23-2</td>
<td>23-2</td>
</tr>
<tr>
<td>M151, M718, and M825 Series 1/4-Ton Truck</td>
<td>4-3</td>
<td>4-4</td>
</tr>
<tr>
<td>M416 Series Cargo Trailer</td>
<td>21-1</td>
<td>21-1</td>
</tr>
<tr>
<td>M880 and M890 Series 1 1/4-Ton Truck</td>
<td>5-3</td>
<td>5-6</td>
</tr>
<tr>
<td>M911 Series Tractor</td>
<td>17-3</td>
<td>17-2</td>
</tr>
<tr>
<td>M915 Series Tractor</td>
<td>18-3</td>
<td>18-2</td>
</tr>
<tr>
<td>M966, M997, M998, M1025, M1026, M1035, M1036, M1037, M1038, M1042, M1044, M1046 Series Trucks</td>
<td>20-3</td>
<td>20-3</td>
</tr>
<tr>
<td>M977, M978, M983, M984, M985 Series Trucks (HEMTT)</td>
<td>19-3</td>
<td>19-3</td>
</tr>
<tr>
<td>M1008, M1008A1, M1009, M1010, M1028, and M1031 Series Trucks</td>
<td>6-3</td>
<td>6-3</td>
</tr>
<tr>
<td>VanBody, 2 1/2-Ton Trucks</td>
<td>12-1</td>
<td>12-1</td>
</tr>
<tr>
<td>Water Tanker, 2 1/2-Ton Trucks</td>
<td>10-2</td>
<td>10-2</td>
</tr>
<tr>
<td>Wrecker Body, 5-Ton Trucks</td>
<td>16-2</td>
<td>16-1</td>
</tr>
<tr>
<td>Cleanup instructions, General.</td>
<td>3-12</td>
<td>3-12</td>
</tr>
<tr>
<td>Component Installation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cabs, 2 1/2 and 5-Ton Trucks</td>
<td>7-6</td>
<td>7-7</td>
</tr>
<tr>
<td>Cargo Bodies, 5-Ton Trucks</td>
<td>13-6</td>
<td>13-5</td>
</tr>
<tr>
<td>Cargo Bodies, 2 1/2 -Ton Trucks</td>
<td>8-6</td>
<td>8-4</td>
</tr>
<tr>
<td>Dump Body, 5-Ton Trucks</td>
<td>14-6</td>
<td>14-9</td>
</tr>
<tr>
<td>Dump Body, 2 1/2-Ton Trucks</td>
<td>9-6</td>
<td>9-6</td>
</tr>
<tr>
<td>M151, M718, and M825 Series 1/4-Ton Truck</td>
<td>4-6</td>
<td>4-6</td>
</tr>
<tr>
<td>M880 and M890 Series 1 1/4-Ton Truck</td>
<td>5-6</td>
<td>5-12</td>
</tr>
<tr>
<td>M911 Series Tractor</td>
<td>17-6</td>
<td>17-6</td>
</tr>
<tr>
<td>M915 Series Tractor</td>
<td>18-6</td>
<td>18-5</td>
</tr>
</tbody>
</table>
INDEX (Con’t)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component Installation (Con’t):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M966, M997, M998, M1025, M1026, M1035, M1036, M1037, M1038, M1042, M1043, M1044, and M1046 Series Trucks</td>
<td>20-6</td>
<td>20-8</td>
</tr>
<tr>
<td>M977, M978, M983, M984 and M985 Series Trucks (HEMIT)</td>
<td>19-6</td>
<td>19-7</td>
</tr>
<tr>
<td>M1008, M1008A1, M1009, M1010, M1028, and M1031 Series Trucks</td>
<td>6-6</td>
<td>6-12</td>
</tr>
<tr>
<td>Component Removal:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cabs, 2 1/2- and 5-Ton Trucks</td>
<td>7-1</td>
<td>7-1</td>
</tr>
<tr>
<td>Cargo Bodies, 5-Ton Trucks</td>
<td>13-1</td>
<td>13-1</td>
</tr>
<tr>
<td>Cargo Bodies, 2 1/2-Ton Trucks</td>
<td>8-1</td>
<td>8-1</td>
</tr>
<tr>
<td>Dump Body, 5-Ton Trucks</td>
<td>14-1</td>
<td>14-1</td>
</tr>
<tr>
<td>Dump Body, 2 1/2 -Ton Trucks</td>
<td>9-1</td>
<td>9-1</td>
</tr>
<tr>
<td>M151, M718, and M825 Series 1/4-Ton Trucks</td>
<td>4-1</td>
<td>4-1</td>
</tr>
<tr>
<td>M880 and M890 Series 1 1/4-Ton Trucks</td>
<td>5-1</td>
<td>5-1</td>
</tr>
<tr>
<td>M911 Series Tractor</td>
<td>17-1</td>
<td>17-1</td>
</tr>
<tr>
<td>M915 Series Tractor</td>
<td>18-1</td>
<td>18-1</td>
</tr>
<tr>
<td>M966, M997, M998, M1025, M1026, M1035, M1036, M1037, M1038, M1042, M1043, M1044, and M1046 Series Trucks</td>
<td>20-1</td>
<td>20-1</td>
</tr>
<tr>
<td>M977, M978, M983, M984, and M985 Series Trucks (HEMIT)</td>
<td>19-1</td>
<td>19-1</td>
</tr>
<tr>
<td>M1008, M1008A1, M1009, M1010, M1028, and M1031 Series Trucks</td>
<td>5-1</td>
<td>5-1</td>
</tr>
<tr>
<td>Corrosion Prevention and Control:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acid Rain</td>
<td>2-17</td>
<td>2-11</td>
</tr>
<tr>
<td>Crevice Corrosion</td>
<td>2-13</td>
<td>2-9</td>
</tr>
<tr>
<td>Four Elements of Rusting</td>
<td>2-2</td>
<td>2-3</td>
</tr>
<tr>
<td>Four Stages of Rust</td>
<td>2-3</td>
<td>2-3</td>
</tr>
<tr>
<td>Fretting Corrosion</td>
<td>2-15</td>
<td>2-11</td>
</tr>
<tr>
<td>Galvanic Corrosion</td>
<td>2-8</td>
<td>2-8</td>
</tr>
<tr>
<td>Subject</td>
<td>Paragraph</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>Mildew</td>
<td>2-16</td>
<td>2-11</td>
</tr>
<tr>
<td>Ozone and Ultraviolet Radiation.</td>
<td>2-3</td>
<td>2-9</td>
</tr>
<tr>
<td>Pitting Corrosion</td>
<td>2-10</td>
<td>2-10</td>
</tr>
<tr>
<td>Poultice Corrosion</td>
<td>2-12</td>
<td>2-9</td>
</tr>
<tr>
<td>Preventive Maintenance for Rust-Prone Areas.</td>
<td>2-6</td>
<td>2-7</td>
</tr>
<tr>
<td>Rust-Prone Areas</td>
<td>2-5</td>
<td>2-5</td>
</tr>
<tr>
<td>Stress Corrosion Cracking</td>
<td>2-14</td>
<td>2-14</td>
</tr>
<tr>
<td>Corrosion Prevention and Control (CPC)</td>
<td>1-10</td>
<td>1-4</td>
</tr>
<tr>
<td>Corrosion Removing Compounds, General</td>
<td>2-19</td>
<td>2-12</td>
</tr>
</tbody>
</table>

D

Drilling instructions, General	3-15	3-22
Drilling Procedures:		
Cabs, 2 1/2- and 5-Ton Trucks...	7-2	7-2
Cargo Bodies, 5-Ton Trucks	13-2	13-1
Cargo Bodies, 2 1/2-Ton Trucks	8-2	8-1
Dump Body, 5-Ton Trucks	14-2	14-1
Dump Body, 2 1/2-Ton Trucks	9-2	9-1
Expansible Van Body, 5-Ton Trucks	15-1	15-1
Fuel Tanker, 2 1/2-Ton Trucks	11-1	11-1
Miniseries Cargo Trailer	22-1	22-1
M105 Series Cargo Trailer	23-1	23-1
M151, M718, and M825 Series 1/4-Ton Trucks.	4-2	4-1
M880 and M890 Series 1 1/4-Ton Trucks	5-2	5-2
M911 Series Tractor	17-2	17-1
M915 Series Tractor	18-2	18-1
INDEX (Con’t)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drilling Procedures Con’t:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M966, M997, M998, M1025, M1026, M1035, M1036, M1037, M1038, M1042,</td>
<td>20-2</td>
<td>20-2</td>
</tr>
<tr>
<td>M1043, M1044, and M1046 Series Trucks .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M977, M978, M983, M984, and M985 Series Trucks (HEMIT)</td>
<td>19-2</td>
<td>19-1</td>
</tr>
<tr>
<td>M1008, M1008A1, M1009, M10110, M1028,</td>
<td>6-2</td>
<td>6-2</td>
</tr>
<tr>
<td>and M1031 Series Trucks .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Tanker, 2 1/2-Ton Trucks .</td>
<td>10-1</td>
<td>10-1</td>
</tr>
<tr>
<td>Wrecker Body, 5-Ton Trucks .</td>
<td>16-1</td>
<td>16-1</td>
</tr>
</tbody>
</table>

Dump Body and Tailgate for 2 1/2-Ton Trucks:		
Cleaning Procedures .	9-3	9-3
Component installation .	9-6	9-6
Component Removal .	9-1	9-1
Drilling Procedures .	9-2	9-1
Rustproofing Inspection .	9-5	9-5
Rustproofing Procedures .	9-4	9-4

Dump Body and Tailgate for 5-Ton Trucks:		
Cleaning Procedures .	14-3	14-6
Component installation .	14-6	14-9
Component Removal .	14-1	14-1
Drilling Procedures .	14-2	14-1
Rustproofing Inspection .	14-5	14-9
Rustproofing Procedures .	14-4	14-7
Emission Control Precautions .	3-11	3-20

Equipment Maintenance:		
Material Pumps .	3-6	3-9
Emission Control Precautions .	3-11	3-20
INDEX (Con’t)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment Maintenance Con’t:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PowerWash Equipment</td>
<td>3-4</td>
<td>3-3</td>
</tr>
<tr>
<td>Spray Guns</td>
<td>3-7</td>
<td>3-12</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rusting</td>
<td>2-2</td>
<td>2-3</td>
</tr>
<tr>
<td>Four Stages of Rust</td>
<td>2-3</td>
<td>2-3</td>
</tr>
<tr>
<td>Fretting Corrosion</td>
<td>2-15</td>
<td>2-11</td>
</tr>
<tr>
<td>Fuel Tankerson 2 1/2-TonTrucks:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleaning Procedures</td>
<td>11-2</td>
<td>11-2</td>
</tr>
<tr>
<td>Drilling Procedures</td>
<td>11-1</td>
<td>11-1</td>
</tr>
<tr>
<td>Inspection</td>
<td>11-4</td>
<td>11-3</td>
</tr>
<tr>
<td>Rustproofing Procedures</td>
<td>11-3</td>
<td>11-3</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galvanic Corrosion</td>
<td>2-8</td>
<td>2-8</td>
</tr>
<tr>
<td>Glossary</td>
<td>1-6</td>
<td>1-3</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazards, Material</td>
<td>1-12</td>
<td>1-5</td>
</tr>
<tr>
<td>HEMTT Vehicles</td>
<td>19-1</td>
<td>19-1</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspections (Fielded Vehicles)</td>
<td>3-14</td>
<td>3-21</td>
</tr>
</tbody>
</table>

Index 6
<table>
<thead>
<tr>
<th>Subject</th>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material Hazards</td>
<td>1-12</td>
<td>1-5</td>
</tr>
<tr>
<td>Material Pumps (Typical):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating</td>
<td>3-5</td>
<td>3-6</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>Table 3-4</td>
<td>3-14</td>
</tr>
<tr>
<td>Mildew</td>
<td>2-16</td>
<td>2-11</td>
</tr>
<tr>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Drum Heaters</td>
<td>3-9</td>
<td>3-19</td>
</tr>
<tr>
<td>Ozone and Ultraviolet Radiation.</td>
<td>2-9</td>
<td>2-11</td>
</tr>
<tr>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitting Corrosion</td>
<td>2-10</td>
<td>2-9</td>
</tr>
<tr>
<td>Policies/Specifications(Corrosion Prevention and Control)</td>
<td>1-4</td>
<td>1-1</td>
</tr>
<tr>
<td>Poultice Corrosion</td>
<td>2-12</td>
<td>2-9</td>
</tr>
<tr>
<td>Powerwash Equipment (Typical):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating</td>
<td>3-4</td>
<td>3-4</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>Table 3-3</td>
<td>3-13</td>
</tr>
<tr>
<td>Precleaning the Vehicle</td>
<td>3-13</td>
<td>3-21</td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rain, Acid</td>
<td>2-17</td>
<td>2-11</td>
</tr>
<tr>
<td>Reporting of Equipment improvement Recommendations (Ears)</td>
<td>1-3</td>
<td>1-1</td>
</tr>
<tr>
<td>Rust-Prone Areas</td>
<td>2-5</td>
<td>2-5</td>
</tr>
<tr>
<td>Rustproofing Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drum Heaters, Operating</td>
<td>3-9</td>
<td>3-19</td>
</tr>
</tbody>
</table>
INDEX (Con’t)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rustproofing Equipment Con’t:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material Pumps (Typical)</td>
<td>3-5</td>
<td>3-6</td>
</tr>
<tr>
<td>Minimum Shop Requirements</td>
<td>3-2</td>
<td>3-1</td>
</tr>
<tr>
<td>Parts/Materials Required</td>
<td>3-3</td>
<td>3-1</td>
</tr>
<tr>
<td>Powerwash Equipment</td>
<td>3-4</td>
<td>3-3</td>
</tr>
<tr>
<td>Spray Guns</td>
<td>3-7</td>
<td>3-12</td>
</tr>
<tr>
<td>Wands</td>
<td>3-8</td>
<td>3-17</td>
</tr>
<tr>
<td>Rustproofing Inspection:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cabs, 2 1/2- and 5-Ton Trucks</td>
<td>7-5</td>
<td>7-6</td>
</tr>
<tr>
<td>Cargo Bodies, 5-Ton Trucks</td>
<td>13-5</td>
<td>13-5</td>
</tr>
<tr>
<td>Cargo Bodies, 2 1/2-Ton Trucks</td>
<td>8-5</td>
<td>8-4</td>
</tr>
<tr>
<td>Dump Body, 5-Ton Trucks</td>
<td>14-5</td>
<td>14-9</td>
</tr>
<tr>
<td>Dump Body, 2 1/2-Ton Trucks</td>
<td>9-5</td>
<td>9-5</td>
</tr>
<tr>
<td>Expansible Van Body, 5-Ton Trucks</td>
<td>15-4</td>
<td>15-3</td>
</tr>
<tr>
<td>Fuel Tanker, 2 1/2-Ton Trucks</td>
<td>11-4</td>
<td>11-3</td>
</tr>
<tr>
<td>M101 Series Cargo Trailer</td>
<td>22-4</td>
<td>22-4</td>
</tr>
<tr>
<td>M105 Cargo Trailer</td>
<td>23-4</td>
<td>23-3</td>
</tr>
<tr>
<td>M151, M718, and M825 Series 1/4-Ton Trucks.</td>
<td>4-5</td>
<td>4-13</td>
</tr>
<tr>
<td>M416 Series Cargo Trailer</td>
<td>21-3</td>
<td>21-2</td>
</tr>
<tr>
<td>M880 and M890 Series 1 1/4-Ton Trucks</td>
<td>5-5</td>
<td>5-12</td>
</tr>
<tr>
<td>M880 and M890 Series 1 1/4-Ton Trucks</td>
<td>5-5</td>
<td>5-12</td>
</tr>
<tr>
<td>M911 Series Tractor</td>
<td>17-5</td>
<td>17-5</td>
</tr>
<tr>
<td>M966, M997, M998, M1025, M1026, M1035, M1036, M1037, M1038, M1042, M1043, M1044, and M1046 Series Trucks.</td>
<td>20-5</td>
<td>20-8</td>
</tr>
<tr>
<td>M977, M978, M983, M984, and M985 Series Trucks (HEMTT)</td>
<td>19-5</td>
<td>19-7</td>
</tr>
<tr>
<td>M1008, M1008A1, M1009, M1010, M1028 and M1031 Series Trucks</td>
<td>6-5</td>
<td>6-11</td>
</tr>
<tr>
<td>Van Body, 2 1/2-Ton Trucks</td>
<td>12-3</td>
<td>12-2</td>
</tr>
</tbody>
</table>
INDEX (Con’t)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rustproofing Inspection Con’t:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Tanker, 2 1/2-Ton Trucks</td>
<td>10-4</td>
<td>10-4</td>
</tr>
<tr>
<td>Wrecker Body, 5-Ton Trucks</td>
<td>16-4</td>
<td>16-4</td>
</tr>
<tr>
<td>Rustproofing Procedures:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cabs, 2 1/2 -and 5-Ton Trucks</td>
<td>7-4</td>
<td>7-4</td>
</tr>
<tr>
<td>Cargo Bodies, 5-Ton Trucks</td>
<td>13-4</td>
<td>13-3</td>
</tr>
<tr>
<td>Cargo Bodies, 2 1/2-Ton Trucks</td>
<td>8-4</td>
<td>8-2</td>
</tr>
<tr>
<td>Dump Body, 5-Ton Trucks</td>
<td>14-4</td>
<td>14-7</td>
</tr>
<tr>
<td>Dump Body, 2 1/2-Ton Trucks</td>
<td>9-4</td>
<td>9-4</td>
</tr>
<tr>
<td>Expansible Van Body, 5-Ton Trucks</td>
<td>15-3</td>
<td>15-2</td>
</tr>
<tr>
<td>Fuel Tanker, 2 1/2 -Ton Trucks</td>
<td>11-3</td>
<td>11-3</td>
</tr>
<tr>
<td>M101 Series Cargo Trailer</td>
<td>22-3</td>
<td>22-3</td>
</tr>
<tr>
<td>M105 Series Cargo Trailer</td>
<td>23-3</td>
<td>23-3</td>
</tr>
<tr>
<td>M151, M718, and M825 Series 1/4-Ton Trucks</td>
<td>4-4</td>
<td>4-8</td>
</tr>
<tr>
<td>M416 Series Cargo Trailer</td>
<td>21-2</td>
<td>21-1</td>
</tr>
<tr>
<td>M880 and M890 Series 1 1/4-Ton Trucks</td>
<td>5-4</td>
<td>5-6</td>
</tr>
<tr>
<td>M911 Series Tractor</td>
<td>17-4</td>
<td>17-2</td>
</tr>
<tr>
<td>M915 Series Tractor</td>
<td>18-4</td>
<td>18-2</td>
</tr>
<tr>
<td>M966, M997, M998, M1025, M1026, M1035, M1036, M1037, M1038, M1042, M1043, M1044, and M1046 Series Trucks</td>
<td>20-4</td>
<td>20-4</td>
</tr>
<tr>
<td>M977, M978, M983, M984, and M985 Series Trucks (HEMTT)</td>
<td>19-4</td>
<td>19-3</td>
</tr>
<tr>
<td>M1008, M1008A1, M1009, M1010, M1028, and M1031 Series Trucks</td>
<td>6-4</td>
<td>6-5</td>
</tr>
<tr>
<td>Van Body, 2 1/2-Ton Trucks</td>
<td>12-2</td>
<td>12-2</td>
</tr>
<tr>
<td>Water Tanker, 2 1/2-Ton Trucks</td>
<td>10-3</td>
<td>10-3</td>
</tr>
<tr>
<td>Wrecker Body, 5-Ton Trucks</td>
<td>16-3</td>
<td>16-2</td>
</tr>
<tr>
<td>Rust Removing Compounds, General</td>
<td>2-19</td>
<td>2-19</td>
</tr>
</tbody>
</table>
By Order of the Secretary of the Army:

CARL E. WON

General, United States Army

Chief of Staff

Official:

PATRICIA P. HICKERSON
Colonel, United States Army
The Adjutant General

Distribution:
To be distributed in accordance with DAForm 12-25-E, block 0530, maintenance requirements for TB 43-0213.
RECOMMENDED CHANGES TO EQUIPMENT TECHNICAL PUBLICATIONS

SOMETHING WRONG WITH THIS PUBLICATION?

FROM: COB 1st Bn 2d Bde
ADDRESS: Ft. Hood, TX 76544
DATE SENT: 10 December 1990

<table>
<thead>
<tr>
<th>BE EXACT</th>
<th>PIN-POINT WHERE IT IS</th>
<th>IN THIS SPACE TELL WHAT IS WRONG AND WHAT SHOULD BE DONE ABOUT IT:</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAGE NO</td>
<td>PARA. NO.</td>
<td>FIGURE NO.</td>
</tr>
<tr>
<td>1-2</td>
<td>1-1</td>
<td>1-1</td>
</tr>
<tr>
<td>6-4</td>
<td>6-7</td>
<td></td>
</tr>
</tbody>
</table>

PRINTED NAME, GRADE OR TITLE AND TELEPHONE NUMBER

John Doe PFC 032-0639

SIGN HERE

John Doe

PS: IF YOUR OUTFIT WANTS TO KNOW ABOUT YOUR RECOMMENDATION MAKE A CARBON COPY OF THIS AND GIVE IT TO YOUR HEADQUARTERS.
SOMETHING WRONG WITH THIS PUBLICATION?

THEN, JOT DOWN THE DOPE ABOUT IT ON THIS FORM, CAREFULLY TEAR IT OUT, FOLD IT AND DROP IT IN THE MAIL:

FROM: (PRINT YOUR UNIT'S COMPLETE ADDRESS)

DATE SENT

<table>
<thead>
<tr>
<th>PUBLICATION NUMBER</th>
<th>PUBLICATION DATE</th>
<th>PUBLICATION TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB 43-0213</td>
<td></td>
<td>CORROSION PREVENTION AND CONTROL INCLUDING RUSTPROOFING PROCEDURES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BE EXACT PIN-POINT WHERE IT IS</th>
<th>IN THIS SPACE TELL WHAT IS WRONG AND WHAT SHOULD BE DONE ABOUT IT:</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAGE NO</td>
<td>PARA. NO</td>
</tr>
</tbody>
</table>

PRINTED NAME, GRADE OR TITLE AND TELEPHONE NUMBER

SIGN HERE

DA FORM
1 JUL 79 2028-2
PREVIOUS EDITIONS ARE OBSOLETE.

P.S. -- IF YOUR OUTFIT WANTS TO KNOW ABOUT YOUR RECOMMENDATION MAKE A CARBON COPY OF THIS AND GIVE IT TO YOUR HEADQUARTERS
Commander
US Army Tank-Automotive Command
ATTN: AMSTA-MB
Warren, Michigan 48397-5000
THE METRIC SYSTEM AND EQUIVALENTS

LINEAR MEASURE
- 1 Centimeter = 10 Millimeters = 0.01 Meters = 0.3937 Inches
- 1 Meter = 100 Centimeters = 1000 Millimeters = 39.37 Inches
- 1 Kilometer = 1000 Meters = 0.621 Miles

WEIGHTS
- 1 Gram = 0.001 Kilograms = 1000 Milligrams = 0.035 Ounces
- 1 Kilogram = 1000 Grams = 2.2 Lb
- 1 Metric Ton = 1000 Kilograms = 1 Megagram = 1.1 Short Tons

LIQUID MEASURE
- 1 Milliliter = 0.001 Liters = 0.0338 Fluid Ounces
- 1 Liter = 1000 Milliliters = 33.82 Fluid Ounces

SQUARE MEASURE
- 1 Sq Centimeter = 100 Sq Millimeters = 0.155 Sq Inches
- 1 Sq Meter = 10,000 Sq Centimeters = 10.76 Sq Feet
- 1 Sq Kilometer = 1,000,000 Sq Meters = 35.84 Sq Miles

CUBIC MEASURE
- 1 Cu Centimeter = 1000 Cu Millimeters = 0.06 Cu Inches
- 1 Cu Meter = 1,000,000 Cu Centimeters = 35.31 Cu Feet

TEMPERATURE
- \(\frac{5}{9} (^\circ F - 32) = ^\circ C \)
- 212° Fahrenheit is equivalent to 100° Celsius
- 90° Fahrenheit is equivalent to 32.2° Celsius
- 32° Fahrenheit is equivalent to 0° Celsius
- \(\frac{9}{5} ^\circ C + 32 = ^\circ F \)

APPROXIMATE CONVERSION FACTORS

<table>
<thead>
<tr>
<th>FROM</th>
<th>TO</th>
<th>MULTIPLY BY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inches</td>
<td>Centimeters</td>
<td>2.540</td>
</tr>
<tr>
<td>Feet</td>
<td>Meters</td>
<td>0.305</td>
</tr>
<tr>
<td>Yards</td>
<td>Meters</td>
<td>0.914</td>
</tr>
<tr>
<td>Miles</td>
<td>Kilometers</td>
<td>1.609</td>
</tr>
<tr>
<td>Square Inches</td>
<td>Square Centimeters</td>
<td>6.451</td>
</tr>
<tr>
<td>Square Feet</td>
<td>Square Meters</td>
<td>0.093</td>
</tr>
<tr>
<td>Square Yards</td>
<td>Square Meters</td>
<td>0.836</td>
</tr>
<tr>
<td>Square Miles</td>
<td>Square Kilometers</td>
<td>2.590</td>
</tr>
<tr>
<td>Acres</td>
<td>Square Hectometers</td>
<td>0.405</td>
</tr>
<tr>
<td>Cubic Feet</td>
<td>Cubic Meters</td>
<td>0.028</td>
</tr>
<tr>
<td>Cubic Yards</td>
<td>Cubic Meters</td>
<td>0.765</td>
</tr>
<tr>
<td>Fluid Ounces</td>
<td>Milliliters</td>
<td>29.573</td>
</tr>
<tr>
<td>Pints</td>
<td>Liters</td>
<td>0.473</td>
</tr>
<tr>
<td>Quarts</td>
<td>Liters</td>
<td>0.946</td>
</tr>
<tr>
<td>Gallons</td>
<td>Liters</td>
<td>3.785</td>
</tr>
<tr>
<td>Ounces</td>
<td>Grams</td>
<td>28.349</td>
</tr>
<tr>
<td>Pounds</td>
<td>Kilograms</td>
<td>0.454</td>
</tr>
<tr>
<td>Short Tons</td>
<td>Metric Tons</td>
<td>0.907</td>
</tr>
<tr>
<td>Pound-Feet</td>
<td>Newton-Meters</td>
<td>1.356</td>
</tr>
<tr>
<td>Pounds per Square Inch</td>
<td>Kilopascals</td>
<td>6.895</td>
</tr>
<tr>
<td>Miles per Gallon</td>
<td>Kilometers per Liter</td>
<td>0.475</td>
</tr>
<tr>
<td>Miles per Hour</td>
<td>Kilometers per Hour</td>
<td>1.609</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FROM</th>
<th>TO</th>
<th>MULTIPLY BY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centimeters</td>
<td>Inches</td>
<td>0.394</td>
</tr>
<tr>
<td>Meters</td>
<td>Feet</td>
<td>3.280</td>
</tr>
<tr>
<td>Meters</td>
<td>Yards</td>
<td>1.094</td>
</tr>
<tr>
<td>Kilometers</td>
<td>Miles</td>
<td>0.621</td>
</tr>
<tr>
<td>Square Centimeters</td>
<td>Square Inches</td>
<td>0.155</td>
</tr>
<tr>
<td>Square Meters</td>
<td>Square Feet</td>
<td>10.764</td>
</tr>
<tr>
<td>Square Meters</td>
<td>Square Yards</td>
<td>1.196</td>
</tr>
<tr>
<td>Square Kilometers</td>
<td>Square Miles</td>
<td>0.386</td>
</tr>
<tr>
<td>Square Hectometers</td>
<td>Acres</td>
<td>2.471</td>
</tr>
<tr>
<td>Cubic Meters</td>
<td>Cubic Feet</td>
<td>35.315</td>
</tr>
<tr>
<td>Cubic Meters</td>
<td>Cubic Yards</td>
<td>1.308</td>
</tr>
<tr>
<td>Milliliters</td>
<td>Fluid Ounces</td>
<td>0.034</td>
</tr>
<tr>
<td>Liters</td>
<td>Pints</td>
<td>2.113</td>
</tr>
<tr>
<td>Liters</td>
<td>Quarts</td>
<td>1.057</td>
</tr>
<tr>
<td>Liters</td>
<td>Gallons</td>
<td>0.264</td>
</tr>
<tr>
<td>Grams</td>
<td>Ounces</td>
<td>0.035</td>
</tr>
<tr>
<td>Kilograms</td>
<td>Pounds</td>
<td>2.205</td>
</tr>
<tr>
<td>Metric Tons</td>
<td>Short Tons</td>
<td>1.102</td>
</tr>
<tr>
<td>Newton-Meters</td>
<td>Pound-Feet</td>
<td>0.738</td>
</tr>
<tr>
<td>Kilopascals</td>
<td>Pounds per Square Inch</td>
<td>0.145</td>
</tr>
<tr>
<td>Kilometers per Liter</td>
<td>Miles per Gallon</td>
<td>2.354</td>
</tr>
<tr>
<td>Kilometers per Hour</td>
<td>Miles per Hour</td>
<td>0.621</td>
</tr>
</tbody>
</table>