This copy is a reprint which includes current pages from Changes 1 and 2.

RADIO SETS: AN/VRC-12 (NSN 5820-00-223-7412), AN/VRC-43 (NSN 5820-00-223-7415), AN/VRC-44 (NSN 5820-00-223-7417), AN/VRC-45 (NSN 5820-00-223-7418), AN/VRC-46 (NSN 5820-00-223-7433), AN/VRC-47 (NSN 5820-00-223-7434), AN/VRC-48 (NSN 5820-00-223-7435), AN/VRC-49 (NSN 5820-00-223-7437) (USED WITHOUT INTERCOM SET)

DEPARTMENTS OF THE ARMY AND NAVY

3 JANUARY 1984
SAFETY STEPS TO FOLLOW IF SOMEONE IS THE VICTIM OF ELECTRICAL SHOCK

1. DO NOT TRY TO PULL OR GRAB THE INDIVIDUAL

2. IF POSSIBLE, TURN OFF THE ELECTRICAL POWER

3. IF YOU CANNOT TURN OFF THE ELECTRICAL POWER, PULL, PUSH, OR LIFT THE PERSON TO SAFETY USING A WOODEN POLE OR A ROPE OR SOME OTHER INSULATING MATERIAL

4. SEND FOR HELP AS SOON AS POSSIBLE

5. AFTER THE INJURED PERSON IS FREE OF CONTACT WITH THE SOURCE OF ELECTRICAL SHOCK, MOVE THE PERSON A SHORT DISTANCE AWAY AND IMMEDIATELY START ARTIFICIAL RESUSCITATION
UNIT MAINTENANCE MANUAL

RADIO SETS

AN/VRC-12 (NSN 5820-00-223-7412) (EIC: GCC)
AN/VRC-43 (NSN 5820-00-223-7415) (EIC: GCD)
AN/VRC-44 (NSN 5820-00-223-7412) (EIC: GCE)
AN/VRC-45 (NSN 5820-00-223-7418) (EIC: GCF)
AN/VRC-46 (NSN 5820-00-223-7433) (EIC: GCG)
AN/VRC-47 (NSN 5820-00-223-7434) (EIC: GCH)
AN/VRC-48 (NSN 5820-00-223-7435) (EIC: GCJ)
AN/VRC-49 (NSN 5820-00-223-7437) (EIC: GCK)

(USED WITHOUT INTERCOM SETS)

TM 11-5820-401-20-1/EE150-JA-MMO-010/E154 VRC 12, 43, is changed as follows:

1. Remove old pages and insert new pages as indicated below.

<table>
<thead>
<tr>
<th>Remove Pages</th>
<th>Insert Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-13 through B-52</td>
<td>B-13 through B-45 (B-46 blank)</td>
</tr>
</tbody>
</table>

2. File this change sheet in front of the publication for reference purposes.

This publication is required for official use or for administrative or operational purposes only. Distribution is limited to US Government agencies. Other requests for this document must be referred to Commander, US Army Communications-Electronics Command and Fort Monmouth, ATTN: AMSEL-LC-LM-LT, Fort Monmouth, New Jersey 07703-5007.

DESTRUCTION NOTICE -- Destroy by any method that will prevent disclosure of contents or reconstruction of the document.
By Order of the Secretaty of the Army:

DENNIS J. REIMER
General, United States Army
Chief of Staff

Official:
JOEL B. HUDSON
Acting Administrative Assistant to the Secretary of the Army

By Order of the Secretary of the Navy:

ROBERT AILES
Rear Admiral, United States Navy
Commander, Space and Naval Warfare Systems Command

DISTRIBUTION:

To be distributed in accordance with DA Form 12-51-E, block 4050 requirements for TM 11-5820-401-20-1.
Organizational Technical Manual

RADIO SETS: AN/VRC-12 (NSN 5820-00-223-7412),
AN/VRC-43 (NSN 5820-00-223-7415), AN/VRC-44 (NSN 5820-00-223-7417),
AN/VRC-45 (NSN 5820-00-223-7418), AN/VRC-46 (NSN 5820-00-223-7433),
AN/VRC-47 (NSN 5820-00-223-7434), AN/VRC-48 (NSN 5820-00-223-7435),
AN/VRC-49 (NSN 5820-00-223-7437)
(USED WITHOUT INTERCOM SET)

TM 11-5820-401-20-1/EE150-JA-MMO-010/E154 VRC 12,43,3 January 1984, is changed as follows:

1. Remove old pages and insert new pages as indicated below. New or changed material is indicated by a vertical bar in the margin of the page. Added or revised illustrations are indicated by a vertical bar adjacent to the illustration identification number.

<table>
<thead>
<tr>
<th>Remove pages</th>
<th>Insert pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>i and ii</td>
<td>i and ii</td>
</tr>
<tr>
<td>1-1 and 1-2</td>
<td>1-1 and 1-2</td>
</tr>
<tr>
<td>1-5 and 1-6</td>
<td>1-5 and 1-6</td>
</tr>
<tr>
<td>1-31 and 1-32</td>
<td>1-31 and 1-32</td>
</tr>
<tr>
<td>1-41 and 1-42</td>
<td>1-41 and 1-42</td>
</tr>
<tr>
<td>1-53 (1-54 blank)</td>
<td>1-53 and 1-54</td>
</tr>
<tr>
<td>3-19 through 3-34</td>
<td>3-19 through 3-34</td>
</tr>
<tr>
<td>3-37 through 3-42</td>
<td>3-37 through 3-42</td>
</tr>
<tr>
<td>3-47 through 3-54</td>
<td>3-47 through 3-54</td>
</tr>
<tr>
<td>3-57 through 3-60</td>
<td>3-57 through 3-60</td>
</tr>
<tr>
<td>3-63 through 3-68</td>
<td>3-63 through 3-68</td>
</tr>
<tr>
<td>3-75 through 3-80</td>
<td>3-75 through 3-80</td>
</tr>
<tr>
<td>3-83 and 3-84</td>
<td>3-83 and 3-84</td>
</tr>
<tr>
<td>Index 5 and Index 6</td>
<td>Index 5 and Index 6</td>
</tr>
<tr>
<td>NONE</td>
<td>FO-5</td>
</tr>
<tr>
<td>NONE</td>
<td>FO-6</td>
</tr>
</tbody>
</table>

2. File this change sheet in front of the publication for reference purposes.

This publication is required for official use or for administrative or operational purpose only. Distribution is limited to US Government Agencies. Other requests for this document must be referred to Commander, US Army Communications-Electronics Command and Fort Monmouth, ATTN: AMSEL-ME-P, Fort Monmouth, NJ 07703-5007.
By Order of the Secretaries of the Army and the Navy:

Official:

JOHN A WICKHAM, JR.
General, United States Army
Chief of Staff

R. L. DILWORTH
Brigadier General, United States Army
The Adjutant General

GLENWOOD CLARK
Vice Admiral, United States Navy
Commander, Space and Naval Warfare
Systems Command

DISTRIBUTION:
To be distributed in accordance with DA Form 12-51 literature requirements for AN/VRC-12, VRC-43-49.
CHANGE

No. 1

ORGANIZATIONAL TECHNICAL MANUAL
RADIO SETS: AN/VRC (NSN 5820-00-223-7412)
AN/VRC-43 (NSN 5820-00-223-7415), AN/VRC-44 (NSN 5820-00-223-7417),
AN/VRC-45 (NSN 5820-00-223-7418), AN/VRC-46 (NSN 5820-00-223-7433),
AN/VRC-47 (NSN 5820-00-223-7434), AN/VRC-48 (NSN 5820-00-223-7435),
AN/VRC-49 (NSN 5820-00-223-7437)
(Used Without Intercom Set)

This Change is current as of 4 April 1985

TM 11-5820-401-20-1/EE150-JA-MMO-010/E 154 VRC 12, 43, 3 January 1984, is changed as follows:

1. Remove old pages and insert new pages as indicated below. New or changed material is indicated by a vertical bar in the margin of the page.

<table>
<thead>
<tr>
<th>Remove pages</th>
<th>Insert pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>i and ii/(iii blank)</td>
<td>i and ii/(iii blank)</td>
</tr>
<tr>
<td>1-1 and 1-2</td>
<td>1-1 and 2</td>
</tr>
<tr>
<td>1-25 and 1-26</td>
<td>1-25 and 1-26</td>
</tr>
<tr>
<td>2-3 and 24</td>
<td>2-3 and 2-4</td>
</tr>
<tr>
<td>3-1 through 3-6</td>
<td>3-1 through 3-6</td>
</tr>
<tr>
<td>3-69 through 3-72</td>
<td>3-69 through 3-71/(3-72 blank)</td>
</tr>
<tr>
<td>3-111 and 3-112</td>
<td>3-111 and 3-112</td>
</tr>
<tr>
<td>3-135 and 3-136</td>
<td>3-135 and 3-136</td>
</tr>
<tr>
<td>3-163 and 3-164</td>
<td>3-163 and 3-164</td>
</tr>
<tr>
<td>A-1 through A-4/(A-4 blank)</td>
<td>A-1 through A-3/(A-4 blank)</td>
</tr>
<tr>
<td>B-13 through B-84</td>
<td>B-13 through B-66</td>
</tr>
<tr>
<td>C-1 and C-2</td>
<td>C-1 and C-2</td>
</tr>
</tbody>
</table>

2. File this change sheet in the front of the publication for reference purposes.
By Order of the Secretaries of the Army and the Navy:

JOHN A WICKHAM, J R,
General, United States Army
Chief of Staff

DONALD J. DELANDRO
Brigadier General, United States Army
The Adjutant General

G.B. SCHICK, J R.
Rear Admiral, United States Navy
Commander, Naval Electronic Systems Command

DISTRIBUTION:
To be distributed in accordance with DA Form 12-51 requirements for AN/VRC-12, AN/VRC-43 thru 49.
WARNING

HIGH VOLTAGE is used in the operation of the receiver-transmitters, RT-524/VRC and RT-246/VRC, of a wheeled vehicle. DEATH ON CONTACT can result so observe the following safety precautions.

DO NOT operate a receiver-transmitter (RT) with its top and/or bottom panels removed.

DO NOT touch or stand within 20 inches (0.5 meters) of an RT's antenna when there is a possibility that the RT could be keyed and transmitting.

If at all possible, work on the equipment only when another person is nearby who is competent in CARDIOPULMONARY RESUSCITATION (CPR) and the five safety steps of the inside cover.

DO NOT BE MISLED by the terms “low voltage” and “low potential.” Voltages/potentials as low as 50 volts can cause DEATH under certain conditions.

Remove or tape all exposed personal metal objects (e.g., watches, rings, and medallions) before working on C-E equipment.

WARNING

HIGH VOLTAGE can be encountered when a communication antenna of a vehicle strikes a powerline. DEATH TO PERSONS inside, or in contact with, the vehicle can result. To reduce this hazard:

DO NOT stop or park a vehicle under any type of powerline.

If you are not sure that an antenna will clear a powerline, stop the vehicle before getting close to the powerline and then either remove an antenna element or carefully tie down the antenna elements to insure that the vehicle can be safely driven under the powerline.

Vehicles with antennas that have two or more antenna elements (auxiliary receiver antennas and/or RT antennas AT-912/VRC and AS-1729/VRC) will probably strike railroad and/or streetcar power (trolley) lines unless the antenna elements are correctly tied down as in A below. To reduce the risk of an antenna element coming loose from its tiedown clamp, the clamp must be secured to the upper antenna element as in B below.
If possible, try to maintain communications with the vehicle antennas tied down.

WARNING

DEATH or SERIOUS INJURIES can result:

When antenna tip caps (para 2-9) are NOT installed on the upper element of antennas that are to be tied down.

When a tied down antenna strikes a fixed object such as an overhead bridge, tree limb, and so forth. Outside persons may be struck by flying antenna parts.

WARNING

DEATH or SERIOUS INJURY can result from the improper use of solvent TRICHLOROTRIFLUOROETHANE. Fumes from this solvent are toxic (poisonous) and prolonged breathing of vapors must be avoided. This solvent will dissolve natural skin oils; therefore, prolonged contact with skin must be avoided. Use TRICHLOROTRIFLUOROETHANE only when:

- Adequate ventilation is provided.
- Protective goggles, gloves, sleeves, and an apron are worn.

Do NOT use compressed air to dry parts.

If solvent is taken internally, CONSULT A PHYSICIAN IMMEDIATELY.

WARNING

SERIOUS INJURY can result from lifting too heavy an object. As a general rule, DO NOT attempt to lift alone an object that exceeds one-third (1/3) of your body weight. An object of such weight is considered a TWO-PERSON LIFT item. An RT-524 and RT-246 each weigh a little more than 60 pounds.

CAUTION

Throughout this manual, there are CAUTIONS that must be observed when doing specific procedures to avoid possible damage to the equipment. Read each caution carefully and then adhere to appropriate safety procedures when doing the work.
Organizational Technical Manual

RADIO SETS: AN/VRC-12 (NSN 5820-00-223-7412), AN/VRC-43 (NSN 5820-00-223-7415), AN/VRC-44 (NSN 5820-00-223-7417), AN/VRC-45 (NSN 5820-00-223-7418), AN/VRC-46 (NSN 5820-00-223-7433), AN/VRC-47 (NSN 5820-00-223-7434), AN/VRC-48 (NSN 5820-00-223-7435), AN/VRC-49 (NSN 5820-00-223-7437)
(USED WITHOUT INTERCOM SET)

REPORTING ERRORS AND RECOMMENDING IMPROVEMENTS

You can help improve this manual. If you find any mistakes, or if you know of a way to improve the procedures, please let us know. Mail your letter, DA Form 2028 (Recommended Changes to Publications and Blank Forms), or DA Form 2028-2 located in the back of this manual direct to: Commander, US Army Communications-Electronics Command and Fort Monmouth, ATTN: AMSEL-ME-MP, Fort Monmouth, New Jersey 07703-5007. For Navy, mail comments to the Commander, Naval Electronic Systems Command, ATTN: ELEX 8122, Washington, DC 20360. In either case, a reply will be furnished direct to you.

*This manual, together with TM 11-5820-401-20-2, -10-1, and -10-2, supersedes TM 11-5820-401-12 including all changes.
HOW TO USE THIS MANUAL

This manual is designed to help you do organizational maintenance for any one of the eight AN/VRC-12 series radio sets installed in wheeled vehicles.

The front cover index is provided for quick reference to important information by general listings. The index on the final pages will help locate specific information by alphabetical listing.

Measurements in the manual are given in both English and Metric Units.

Read all preliminary information found at the beginning of each procedure. It has important information and safety instructions you must follow before beginning work.

Warning pages are at the beginning of this manual. You should learn the warnings before doing maintenance on the equipment and always follow appropriate safety procedures and precautions.

Paragraphs in this manual are numbered by chapter and order of appearance within a chapter. A subject index appears at the beginning of each chapter section to help you find the exact paragraph you are looking for.

Instructions for using troubleshooting tables are located in paragraph 3-7.

Instructions for performing the PMCS are located in paragraph 3-4.

Instructions for installing items of equipment are located in paragraph 2-4.

Instructions for evaluating the performance of the equipment are located in paragraph 3-13.
CHAPTER 1

INTRODUCTION

<table>
<thead>
<tr>
<th>Subject</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Information</td>
<td>I</td>
<td>1-1</td>
</tr>
<tr>
<td>Equipment Description and Data</td>
<td>II</td>
<td>1-4</td>
</tr>
<tr>
<td>Principles of Operation</td>
<td>III</td>
<td>1-32</td>
</tr>
</tbody>
</table>

OVERVIEW

This chapter provides general information about the communication-electronics (C-E) items of equipment that make up the AN/VRC-12 series of radio sets installed in wheeled vehicles. Specifically, this chapter covers the names and model numbers of the C-E components, common maintenance forms and records associated with the components, general administrative procedures for the components, and specific descriptions and data about each component. It also presents the basic principles of operation for each circuit of a typical radio set.

Section I GENERAL INFORMATION

<table>
<thead>
<tr>
<th>Subject</th>
<th>Para</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope</td>
<td>1-1</td>
<td>1-1</td>
</tr>
<tr>
<td>Consolidated Index of Army Publications and Blank Forms</td>
<td>1-2</td>
<td>1-2</td>
</tr>
<tr>
<td>Maintenance Forms, Records, and Reports</td>
<td>1-3</td>
<td>1-2</td>
</tr>
<tr>
<td>Reporting Equipment Improvement Recommendations (EIR)</td>
<td>1-4</td>
<td>1-2</td>
</tr>
<tr>
<td>Destruction of Army Electronics Materiel to Prevent Enemy Use</td>
<td>1-5</td>
<td>1-2</td>
</tr>
<tr>
<td>Administrative Storage</td>
<td>1-6</td>
<td>1-2</td>
</tr>
<tr>
<td>Nomenclature Cross-Reference List</td>
<td>1-7</td>
<td>1-3</td>
</tr>
<tr>
<td>Hand Receipt Manual</td>
<td>1-8</td>
<td>1-4</td>
</tr>
</tbody>
</table>

1-1. SCOPE.

Type of Manual: This manual covers the organizational level of maintenance for the AN/VRC-12 series of radio sets.

Model Numbers and Equipment Names: The AN/VRC-12 series of radio sets consists of the following eight configurations: AN/VRC-12, AN/VRC-43, AN/VRC-44, AN/VRC-45, AN/VRC-46, AN/VRC-47, AN/VRC-48 and AN/VRC-49.

Purpose of Radio Sets: The purpose of the AN/VRC-12 series of radio sets is to provide short range, two-way radio communication in the 30- to 75.95-MHz range, using frequency-modulated (FM) transmission and reception.

The radio sets are used in vehicles such as jeeps, trucks and other wheeled vehicles. When the radios are installed in tanks and armored personnel carriers, refer to TM 11-5820-401-20-2/EE150-JA-MMO-020/E154 VRC 12,43.

This radio set series provides for command and control of the vehicle over the two-way radio link.
1-2. CONSOLIDATED INDEX OF ARMY PUBLICATIONS AND BLANK FORMS.

Refer to the latest issue of DA Pam 310-1 to determine whether there are new editions, changes or additional publications pertaining to the equipment.

1-3. MAINTENANCE FORMS, RECORDS, AND REPORTS.

Reports of Maintenance and Unsatisfactory Equipment. Department of the Army forms and procedures used for equipment maintenance will be those prescribed by DA Pam 738-750, as contained in Maintenance Management Update. Navy personnel will report maintenance performed utilizing the Maintenance Data Collection Subsystem (MDCS) IAW OPNAVINST 4790.2, Vol 3 and unsatisfactory material/conditions (UR submissions) IAW OPNAVINST 4790.2, Vol 2, chapter 17.

REPORT OF PACKAGING AND HANDLING DEFICIENCIES

Fill out and forward SF 364 (Report of Discrepancy (ROD)) as prescribed by AR 735-11-2/DLAR 4140.55/NAVMATINST 4355.73B/AFR 400-54/MCO 4430.3H.

DISCREPANCY IN SHIPMENT REPORT (DISREP) (SF 361)

Fill out and forward Discrepancy in Shipment Report (DISREP) (SF 361) as prescribed in AR 55-38/NAVSUPINST 4610.33C/AFR 75-18/MCO P4610.19D/DLAR 4500.15.

1-4. REPORTING EQUIPMENT IMPROVEMENT RECOMMENDATIONS (EIR).

a. Army. If your AN/VRC-12 series of radio sets needs improvement, let us know. Send us an EIR. You, the user, are the only one who can tell us what you don't like about your equipment. Put it on an SF 368 (Quality Deficiency Report). Mail it to: Commander, US Army Communications-Electronics Command and Fort Monmouth, ATTN: AMSEL-PA-MA-D, Fort Monmouth, New Jersey, 07703-5023, We'll send you a reply.

b. Navy. Navy personnel are encouraged to submit EIR through their local Beneficial Suggestion Program.

1-5. DESTRUCTION OF ARMY ELECTRONICS MATERIEL TO PREVENT ENEMY USE.

Destruction of Army electronics materiel to prevent enemy use shall be in accordance with TM 750-244-2.

1-6. ADMINISTRATIVE STORAGE.

Administrative storage of equipment issued to and used by Army activities will have preventive maintenance performed in accordance with the PMCS charts before storing. When removing the equipment from administrative storage the PMCS should be performed to assure operational readiness. Disassembly and repacking of equipment for shipment or limited storage are covered in Chapter 3 Section V.
1-7. NOMENCLATURE CROSS. REFERENCE LIST.

This list contains common names used throughout this manual in place of official nomenclature.

NOTE

All equipment identified with (*) represents all models of the equipment.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Official Nomenclature</th>
</tr>
</thead>
<tbody>
<tr>
<td>antenna, RT</td>
<td>Antenna AS-1729/VRC or Antenna AT-912/VRC (entire assemblies including antenna elements, bases, and mounts)</td>
</tr>
<tr>
<td>antenna, matching unit</td>
<td>Antenna Base, Matching Unit, MX-6707/VRC (part of Antenna AS-1729/VRC) or Antenna Matching Unit MX-2799/VRC (part of Antenna AT-912/VRC)</td>
</tr>
<tr>
<td>AN/VRC-12 series of radio sets</td>
<td>AN/VRC-12, AN/VRC-43, AN/VRC-44, AN/VRC-45, AN/VRC-46, AN/VRC-47, AN/VRC-48 and AN/VRC-49</td>
</tr>
<tr>
<td>aux receiver</td>
<td>Receiver, Radio R-442(*)/VRC</td>
</tr>
<tr>
<td>aux receiver mounting</td>
<td>Mounting MT-1898/VRC</td>
</tr>
<tr>
<td>aux receiver antenna</td>
<td>Antenna Base AB-15/GR or AB-558/GR and Antenna Elements MS-116A, MS-117A and MS-118A</td>
</tr>
<tr>
<td>handset</td>
<td>Handset H-189/GR or H-250/U (earphone, microphone and key switch)</td>
</tr>
<tr>
<td>headset</td>
<td>Headset H-140A/U or H-251/U (earphones only)</td>
</tr>
<tr>
<td>loudspeaker</td>
<td>Loudspeaker LS-454/U</td>
</tr>
<tr>
<td>microphone</td>
<td>Microphone Dynamic M-80/U (microphone with key switch only)</td>
</tr>
<tr>
<td>radio relay box or retransmit box</td>
<td>Control, Radio Set C-2299/VRC</td>
</tr>
<tr>
<td>receiver-transmitter or RT</td>
<td>Receiver-Transmitter RT-246()/VRC and RT-524()/VRC</td>
</tr>
<tr>
<td>remote box</td>
<td>Control, Frequency Selector C-2742/VRC (used with RT-246/VRC)</td>
</tr>
<tr>
<td>RT mounting</td>
<td>Mounting MT-1029/VRC</td>
</tr>
<tr>
<td>switch box</td>
<td>Switch Box Assembly</td>
</tr>
</tbody>
</table>
1-8. HAND RECEIPT MANUAL.

This manual has a companion document with a TM number followed by “-HR” (Hand Receipt). The TM 11-5820-401-20-1-HR provides a listing on a preprinted DA Form 2062 (Hand Receipt) of Accountable End Items/Components of End items (COEI) and Additional Authorization List (AAL) items related to the AN/VRC-12 series radio sets used in wheeled vehicles. There is a preprinted hand receipt for each radio set authorized for each type of wheeled vehicle. Each preprinted hand receipt lists the items of equipment authorized for installation, each item’s National Stock Number (NSN) and the number (quantity) of any one item authorized for standard configurations. As an aid to property accountability, additional -HR manuals maybe requisitioned from the US Army Adjutant General Publications Center, Baltimore, MD, in accordance with the procedures in Chapter 3, AR 310-2, and DA Pam 310-10-2.

Radio set items consist of the receiver-transmitter(s) (RT’s) and the antenna(s), plus the aux receiver as appropriate to the AN/VRC-12 series radio set to be used with a particular vehicle.

Installation kit items consist of the receiver-transmitter mounting(s), the aux receiver mounting(s) and the radio control boxes, C-2299/VRC and C-2742/VRC, to be used with a particular vehicle and configuration. The kit also consists of headsets, handsets, microphones, loudspeakers and other items, as appropriate to a particular vehicle.

Section II EQUIPMENT DESCRIPTION AND DATA

<table>
<thead>
<tr>
<th>Subject</th>
<th>Para</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose and Use of Equipment</td>
<td>1-3</td>
<td>1-4</td>
</tr>
<tr>
<td>Equipment Data</td>
<td>1-10</td>
<td>1-5</td>
</tr>
<tr>
<td>Description of Components</td>
<td>1-11</td>
<td>1-11</td>
</tr>
<tr>
<td>Location of Major Components and Cabling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M882 (Radio Sets AN/VRC-46, (-12, -47))</td>
<td>1-12</td>
<td>1-26</td>
</tr>
<tr>
<td>M151 (Radio Sets AN/VRC-12, -43 through -49)</td>
<td>1-13</td>
<td>1-27</td>
</tr>
<tr>
<td>Differences Between Models</td>
<td>1-14</td>
<td>1-28</td>
</tr>
<tr>
<td>Safety, Care and Handling</td>
<td>1-15</td>
<td>1-31</td>
</tr>
</tbody>
</table>

1-9. PURPOSE AND USE OF EQUIPMENT.

The eight configurations of an AN/VRC-12 series of radio sets consist of various combinations of two basic components: a FM receiver-transmitter (RT-246/VRC or RT-524/VRC) and a FM auxiliary receiver (R-442/VRC). In addition, the configurations consisting of a RT-246/VRC may have a Remote Box C-2742/VRC attached and a RT of any configuration may have a Retrans Box C-2299/VRC attached.

Various types of antennas are available, depending on the mission and the communication range needed. Normally, for wheeled vehicles, an AT-912/VRC or AS-1729/VRC is used with each RT. The Antenna Base AB-15/GR, with associated antenna elements, is used with one or more auxiliary receivers.

The vehicle’s electrical system provides the 22 to 30 vdc input operating voltage for any of the radio set configurations. The vehicle’s electrical system consists of a battery pack and a charging system.

Secure communication is possible using Vinson or Nestor security equipment and the X-mode facility of the radio components.

For further information on operating instructions, refer to [TM 11-5820-401-10-1](#).
1-10. EQUIPMENT DATA.

The following table lists the operational characteristics of the radio sets,

RECEIVER-TRANSMITTERS (RT-246(*)/VRC AND RT-524(*)/VRC)

General

<table>
<thead>
<tr>
<th>Type of receiver-transmitter</th>
<th>FM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>30 to 75.95 MHz at 0.05-MHz intervals</td>
</tr>
<tr>
<td>Frequency stability</td>
<td>±3 kHz of selected frequency</td>
</tr>
<tr>
<td>Number of channels available</td>
<td>920</td>
</tr>
<tr>
<td>Type of tuning</td>
<td>Manual tuning exists for both RT-524()/VRC and RT-246()/VRC. For RT-246(*)/VRC, only ten frequencies can be preset for automatic pushbutton tuning; can also be selected automatically from a C-2742/VRC connected to RT-246/VRC.</td>
</tr>
<tr>
<td>Antenna jack impedance (rf)</td>
<td>50 ohms; BNC jack</td>
</tr>
<tr>
<td>RT antenna matching unit control</td>
<td>The RT provides control voltages to its antenna matching unit for proper tuning of the antenna elements. (Matching networks in Antenna AS-1729/VRC also can be manually selected.)</td>
</tr>
<tr>
<td>Operating conditions</td>
<td>Push-to-talk (transmit) and release-to-listen (receive)</td>
</tr>
<tr>
<td>Modes of operation</td>
<td>Voice (radio-telephone) and with additional equipment, retransmission (radio relay) and X-mode (speech-secured).</td>
</tr>
<tr>
<td>X-mode of operation</td>
<td>Provides for secure voice communication.</td>
</tr>
<tr>
<td>Audio response capability</td>
<td>300 to 3000 Hz</td>
</tr>
<tr>
<td>Operating voltage requirement</td>
<td>22 to 30 vdc</td>
</tr>
</tbody>
</table>

Transmitting Features

<table>
<thead>
<tr>
<th>Output rf power (into ideal 50-ohm antenna):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Low power</td>
<td>0.5 to 10 watts</td>
</tr>
<tr>
<td>High power</td>
<td>30 watts minimum to 65 watts maximum</td>
</tr>
</tbody>
</table>
1-10. EQUIPMENT DATA. (CONT)

RECEIVER-TRANSMITTERS (RT-246(*)/VRC AND RT-524(*)/VRC) (CONT)

Transmitting Features (Cont)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission distance (using whip antenna)</td>
<td>Approximately 5 miles (8 km) on low power, approximately 25 miles (40 km) on high power</td>
</tr>
<tr>
<td>Carrier deviation</td>
<td>Audio input of 2.8 millivolts produces rf carrier deviation of 8 kHz ± 2 kHz.</td>
</tr>
<tr>
<td>Squelch tone signal</td>
<td>150 Hz ± 1Hz; transmitted on all settings of SQUELCH switch except OLD ON position</td>
</tr>
<tr>
<td>Audio input impedance</td>
<td>150-ohm microphone; 600 ohms for X-mode operations at X-mode jack</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>Capable of operating continuously at high power in 120°F (49°C) temperature with input operating voltage 22 vdc and for one hour with input voltage of 30 vdc</td>
</tr>
</tbody>
</table>

Power Drain:

- Low power: 3 amps at 25 vdc
- High power: 10 amps at 25 vdc

Receiving Features

- RF signal sensitivity: 0.1 microvolt, minimum
- Audio output impedances (nominal):
 - X-mode: 600 ohms
 - External loudspeaker: 160 ohms
 - Headphone: 150 ohms
- To RETRANS box (fixed level monitoring): 1800 ohms

Squelch types:

- Tone (operative in NEW SQUELCH): Responsive to 150-Hz squelch tone of received signal
- Carrier (operative in OLD SQUELCH): Responsive to carrier signal

1-6
1-10. EQUIPMENT DATA. (CONT)

AUX RECEIVER R-442/VRC

General

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of receiver</td>
<td>FM</td>
</tr>
<tr>
<td>Frequency range</td>
<td>30 to 75.95 MHz at 0.05-MHz intervals</td>
</tr>
<tr>
<td>Frequency stability</td>
<td>± 3 kHz of selected frequency</td>
</tr>
<tr>
<td>Number of channels available</td>
<td>920</td>
</tr>
<tr>
<td>Type of tuning</td>
<td>Manual tuning (only)</td>
</tr>
<tr>
<td>Antenna jack impedance (rf)</td>
<td>50 ohms; BNC jack</td>
</tr>
<tr>
<td>Operating conditions</td>
<td>Receive only</td>
</tr>
<tr>
<td>Modes of operation</td>
<td>Voice (radio receive only) and, with additional equipment, X-mode (speech-secured)</td>
</tr>
<tr>
<td>Audio response capability</td>
<td>300 to 3000 Hz</td>
</tr>
<tr>
<td>Operating voltage requirement</td>
<td>22 to 30 vdc</td>
</tr>
</tbody>
</table>

Receiving Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF signal sensitivity</td>
<td>0.1 microvolt minimum</td>
</tr>
<tr>
<td>Audio output impedances (nominal):</td>
<td></td>
</tr>
<tr>
<td>External loudspeaker</td>
<td>160 ohms</td>
</tr>
<tr>
<td>Headphone</td>
<td>150 ohms</td>
</tr>
<tr>
<td>X-mode</td>
<td>600 ohms</td>
</tr>
<tr>
<td>Fixed level monitoring</td>
<td>1600 ohms</td>
</tr>
<tr>
<td>Squelch types:</td>
<td></td>
</tr>
<tr>
<td>Carrier (operative in OLD SQUELCH)</td>
<td>Responsive to carrier signal</td>
</tr>
<tr>
<td>Tone (operative in NEW SQUELCH)</td>
<td>Responsive to 150-Hz squelch tone signal of received signal</td>
</tr>
</tbody>
</table>
1-10. EQUIPMENT DATA. (CONT)

RT ANTENNAS

AS-1729/VRC (ROUND BASE)

<table>
<thead>
<tr>
<th>Antenna type</th>
<th>Two-section whip, consisting of Matching Unit MX-6707/VRC and Antenna Elements AS-1730/VRC (lower) and AT-1095/VRC (upper)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>30 to 76 MHz</td>
</tr>
<tr>
<td>Power handling capability</td>
<td>70 w, maximum</td>
</tr>
<tr>
<td>Input impedance (rf)</td>
<td>50 ohms, BNC jack</td>
</tr>
</tbody>
</table>

AT-912/VRC (SQUARE BASE)

<table>
<thead>
<tr>
<th>Antenna type</th>
<th>Two-section whip, consisting of Matching Unit MX-2799/VRC and Antenna Elements AT-1096/VRC (lower) and AT-1095/VRC (upper)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>30 to 76 MHz</td>
</tr>
<tr>
<td>Power handling capability</td>
<td>70 w, maximum</td>
</tr>
<tr>
<td>Input impedance (rf)</td>
<td>50 ohms, BNC jack</td>
</tr>
</tbody>
</table>

AUXILIARY RECEIVER ANTENNAS

<table>
<thead>
<tr>
<th>Antenna type</th>
<th>Three-section whip, consisting of Antenna Base AB-15/GR or AB-558/GR and Antenna Elements MS-116 (lower), MS-117 (middle) and MS-118 (upper)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>30 to 76 MHz</td>
</tr>
</tbody>
</table>

REMOTE BOX

<table>
<thead>
<tr>
<th>Control frequency selector</th>
<th>Used with RT-246/VRC only.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio function</td>
<td>Used to remotely select any one of the ten RT-246 preset frequencies. Also provides remote control of the input operating voltage and transmit rf power level of the RT-246/VRC.</td>
</tr>
</tbody>
</table>
1-10. EQUIPMENT DATA. (CONT)

RADIO RELAY BOX

Control, radio set
C-2299/VRC

Frequency range (audio) 500 to 3000 Hz

Radio function Provides radio relay operations for the AN/VRC-45 and
AN/VRC-49 configurations. Is also used to extend the
RT audio accessory functions for the other six AN/
VRC-12 series configurations.

AUDIO ACCESSORIES
(several available)

Push-to-talk/release-to-
listen Key switch, spring held at release-to-listen

Microphone impedance 150 ohms ± 15 percent

Earphone and loudspeaker
impedance 600 ohms ± 20 percent

The following table lists the weights and dimensions of the AN/VRC-12 series radio sets.

RECEIVER-TRANSMITTERS (RT)

RT-524/VRC

6 3/4 inches (17.15 cm) high, 13 3/8 inches (33.97 cm)
depth, 15 3/8 inches (39.05 cm) wide, 51 pounds
(23.15 kg)

RT-246/VRC

6 3/4 inches (17.15 cm) high, 13 3/8 inches (33.97 cm)
depth, 15 3/8 inches (39.05 cm) wide, 51 pounds
(23.15 kg)

AUX RECEIVER

R-442(*)/VRC

6 3/4 inches (17.15 cm) high, 13 3/8 inches (33.97 cm)
depth, 5 5/8 inches (14.29 cm) wide, 18 1/4 pounds
(8.29 kg)

ANTENNAS

AS-1729/VRC (assembled) 10 1/2 feet (3.20 meter) long, 10 pounds (4.54 kg)

Element AS-1730/VRC 4 feet, 4 3/8 inches (1.33 m) long

Element AT-1095/VRC 5 feet, 4 1/2 inches (1.64 m) long

Antenna Matching Unit
MX-6707/VRC 14 3/8 inches (36.51 cm) long
1-10. EQUIPMENT DATA. (CONT)

ANTENNAS (CONT)

AT-912/VRC (assembled)
Antenna Base AB-719/VRC
Element AT-1095/VRC
Element AT-1096/VRC
Antenna Matching Unit MX-2799/VRC

Vertical: 11 1/4 feet (3.43 m) long; horizontal:
10 1/2 feet (3.20 m) long; 18 pounds (8.17 kg)

4 feet, 6 inches (1.37 m) long

4 inches (10.16 cm) high, 5 1/4 Inches (13.34 cm) deep, 12 1/2 inches (31.75 cm) wide, 10 pounds (4.54 kg)

AUX RECEIVER ANTENNA

Assembled 33 1/2 inches (85.09 cm) long

Antenna Base AB-15/GR and AB-558/GR 17 1/2 inches (44.45 cm) long

Element MS-116A 3 feet, 3 1/2 inches (1.00 m) long

Element MS-117A 3 feet, 3 1/2 inches (1.00 m) long

Element MS-118A 3 feet, 3 3/4 inches (1.01 m) long

Mounting MT-1029/VRC 5 inches (12.70 cm) high, 13 1/2 inches (34.29 cm) deep, 157/8 inches (40.32 cm) wide, 17 1/2 pounds (7.95 kg)

Mounting MT-1898/VRC 5 inches (12.70 cm) high, 13 1/2 inches (34.29 cm) deep, 5 1/2 inches (13.97 cm) wide, 9 1/4 pounds (4.20 kg)

REMOTE BOXES

Control, radio set C-2299/VRC 3 3/8 inches (8.57 cm) high, 3 3/8 inches (8.57 cm) deep, 4 3/8 inches (11.11 cm) wide, 2 pounds (0.91 kg)

Control, frequency selector C-2742/VRC 3 3/16 inches (8.10 cm) high, 3 1/4 inches (8.26 cm) deep, 4 3/8 Inches (11.11 cm) wide, 2 pounds (0.91 kg)
1-11. DESCRIPTION OF COMPONENTS.

RADIO SET COMPONENTS: AN/VRC-12 SERIES

The FM medium-power radio sets AN/VRC-12 and AN/VRC-43 through AN/VRC-49 are commonly referred to as the AN/VRC-12 series radios. All eight configurations of these radio sets consist of at least one RT, an FM receiver-transmitter (RT-246/VRC or RT-524/VRC), and six of the configurations include an auxiliary FM receiver (R-442/VRC).
The Auxiliary Receiver R-442/VRC is used for the AN/VRC-12, AN/VRC-44, AN/VRC-47 and AN/VRC-48 radio sets.

The AN/VRC-12 series radio set components need interconnecting cables, dc power, radio control boxes and audio accessories to be operational. Input dc voltage (22 to 30v) is provided by vehicular electrical power.
1-11. DESCRIPTION OF COMPONENTS. (CONT)

The radios, RT-246/VRC, RT-524/VRC and the R-442/VRC, are rugged, lightweight, compact FM radio units. They are housed in waterproof cases. All the operating cables are on the front panel. On each of the three units, the plug at their rear mates with the junction box jack on the rear wall of the radio mount.

A blower inside each RT aids in cooling the equipment. The top and bottom covers of all radio components are held by captive screws.

All configurations in the AN/VRC-12 series have at least one RT (RT-246/VRC or RT-524/VRC). Each RT has its own antenna (AS-1729/VRC and AT-912/VRC). Each RT is secured to its own mounting (MT-1029/VRC). Four of the configurations (AN/VRC-12, -44, -47, -48) have aux receiver(s) (R-442/VRC). Each of the aux receivers is secured to its own mounting (MT-1898/VRC).
1-11. DESCRIPTION OF COMPONENTS. (CONT)

RADIO SET COMPONENTS: AN/VRC-12 SERIES (CONT)

The R-442/VRC has an antenna which consists of three whip antenna elements attached to one Antenna Base AB-15/GR or the AB-558/GR. Only one aux receiver antenna is used with any of the four configurations AN/VRC-12, -44,-47 or -48.

Radio Control Boxes

The Radio Control Boxes C-2299/VRC and C-2742/VRC work with the RT-246/VRC in configurations AN/VRC-12, -43, -44 and -45. The C-2299/VRC works with any of the eight AN/VRC-12 series configurations to extend audio accessory function. It is used in AN/VR-45 and -49 for retransmission (relay). The C-2742 works with the RT-246/VRC to remotely control application of power.

Audio Accessories

Audio accessories and some interconnecting cables for the radio sets are issued as part of each vehicle’s installation kit.
1-11. DESCRIPTION OF COMPONENTS. (CONT)

RECEIVER-TRANSMITTER RT-246/VRC

The RT-246/VRC provides two-way FM radio communication on a push-to-talk/release-to-listen basis. It contains ten pushbuttons, which, when preset, provide automatic access to any one of ten preset frequencies. All operational controls and jacks are on the front panel.

The POWER switch (OFF-BREAKER RESET/LOW/HIGH/REMOTE) is used to turn the RT on or off and provides circuit breaker (overload) reset. It can also turn on and off all other components connected to the RT. The POWER switch also establishes the rf output power level (LOW or HIGH) of its transmitter. The REMOTE setting is used when a Remote Box C-2742 is connected to the REMOTE jack on the RT front panel.

The LIGHT switch controls the power to the dial lamp and the CALL lamp. It turns the lamps on and off.

The BAND switch selects the tuning range for manual tuning; BAND A (30.00 to 52.95 MHz) or BAND B (53.00 to 75.95 MHz). The MC control provides manual tuning of the RT in 1-MHz steps (30, 31; 53, 54, etc). The KC control provides manual tuning of the RT in 0.05-MHz steps (.00, .05, .10, etc). A protective shutter covers the MC numbers of the band not used.

When the BAND switch is set at AUTO, band selection and the actual operating frequency is determined by the pushbutton that is pressed in. (Instructions for presetting the ten pushbuttons to desired operating (channel) frequencies are on the back side of the pushbutton hinged cover.)

The ANT and ANT CONT jacks provide the connections for two cables to connect the RT antenna to the RT. The ANT jack connects an rf cable (CG-1773/U) to provide the rf signal path. The ANT CONT connects the control cable (CX-4722) to the RT. This provides for tuning the antenna elements according to operating frequency.

The two MIKE jacks provide connection for a variety of audio accessories (e.g., an external loudspeaker, headphones, microphones, handsets and combination headphone/microphone).

The VOLUME control adjusts the loudness of signals heard from any audio accessory connected to the MIKE jacks.
1-11. DESCRIPTION OF COMPONENTS. (CONT)

RECEIVER TRANSMITTER RT-246/VRC (CONT)

The SQUELCH switch has four positions. If a signal is not received and the SQUELCH is in either of its OFF positions, a random noise (called rushing noise) is produced by the RT receiver. The rushing noise will be passed to the audio reproducers and heard as a hissing sound.

If a signal is not received, and the SQUELCH is in either of its ON positions, the RT squelch circuit will be activated and the audio reproducer will be quieted. For this situation, when a signal is received or the RT is keyed, the RT squelch circuit will automatically be deactivated. The received signal or noise sidetone signal will be heard from the RT audio reproducer. When the squelch deactivates, the RT’s CALL lamp will also light (if the RT’s light switch is ON).

The CALL lamp shows that a signal is being received when the SQUELCH control is set to NEW ON or OLD ON. When the squelch deactivates, the CALL lamp will light (if LIGHT switch is at ON).

An X-mode jack is provided for connecting the RT to additional equipment for speech-secure transmission. When this is the case, an X-mode switch inside the RT must be set to X-mode. When secure equipment is not provided, the X-mode plug must be placed on the X-mode jack.

RECEIVER TRANSMITTER RT-524/VRC

The RT-524/VRC provides the same functions and has the same features as the RT-246, except that there are no provisions for automatic pushbuttons tuning and remote control from a C-2742. Instead of these features, the RT-524 has a built-in loudspeaker (the RT-246 does not). The front panel SPEAKER switch is used to turn the built-in speaker on and off.
1-11. DESCRIPTION OF COMPONENTS. (CONT)

RECEIVER-TRANSMITTER ANTENNAS

AT-912/VRC, AS-1729/VRC

The AT-912/VRC and the AS-1729/VRC are used with the RT-246 and RT-524. Both antennas receive and transmit signals for the receiver-transmitters. Each antenna has a matching unit and two antenna elements.

Both matching units will automatically tune their antenna elements according to tuning voltages applied from the associated RT through a control cable(s). The MX-6707 has a switch on its base for manual tuning when the control cable is disconnected. The MX-2799 has no provisions for manual tuning.

The matching base unit acts as a base for the antenna elements. The spring assembly in the matching unit allows the antenna element to bend easily when it strikes an obstruction.

The antenna elements are used to radiate (transmit) signals during transmission and to collect (receive) signals when receiving.

The antenna support system secures the antenna system to the vehicle.
1-11. DESCRIPTION OF COMPONENTS. (CONT)

RECEIVER-TRANSMITTER ANTENNAS (CONT)

Antenna AS-1729/VRC (Round Base)

The AS-1729/VRC is used with vehicles which have the radio sets AN/VRC-12 and AN/VRC-43 through AN/VRC-49. The Antenna AS-1729 consists of two whip antenna elements (AT-1095/VRC and AS-1730/VRC), a tip cap, the Matching Unit MX-6707/VRC and miscellaneous hardware.

The MX-6707/VRC tunes the antenna elements either by automatic or manual selection. The manual tuning switch is on the bottom of the matching unit.

NOTE

Disconnect the cables before manually tuning the antenna matching unit.

Antenna AT-912/VRC (Square Base)

The Antenna AT-912/VRC consists of two whip antenna elements (AT-1095/VRC and AT-1096/VRC), a tip cap, antenna support equipment, antenna tiedown assembly and Matching Unit MX-2799/VRC.

When RT Control Cable CX-4722 is connected to the matching unit, the MX-2799/VRC automatically tunes the antenna elements to the transmitting frequency of the receiver-transmitter.
1-11. DESCRIPTION OF COMPONENTS. (CONT)

AUX RECEIVER R-442/VRC

The Aux Receiver R-442/VRC provides receive-only FM radio communications from a distant station. It is used as part(s) of the configurations AN/VRC:12, -44, -47, and -48. For these configurations, the R-442(s) will be operated on a channel frequency other than the associated RT.

The POWER switch is used to turn the aux receiver on and off.

The LIGHT switch controls dc power to the dial window lamp and SQUELCH call indicator.

The BAND switch selects tuning of frequency band A (30.00 to 52.95 MHz) or band B (53.00 to 75.95 MHz). In the KC function, the TUNE control provides manual tuning of the receiver in 0.05-MHz steps (.00, .05, .10 etc). In the MC position, the TUNE control provides manual tuning of the receiver in 1-MHz steps (30, 31, 32, etc).

Two AUDIO jacks, wired in parallel with each other, maybe used to connect audio accessories such as headsets and loudspeakers.

The VOLUME control adjusts the loudness of signals heard from any audio accessory connected to the audio jacks.

Two ANT jacks (wired in parallel) are provided to connect an rf cable from the auxiliary receiver antenna to the receiver (B-RCVR). When there is a second receiver (C-RCVR), as in AN/VRC-44 or -48, the unused ANT jack on the B-RCVR is connected by rf cable to either ANT jack on the C-RCVR so that both receivers use the same auxiliary receiver antenna.
1-11. DESCRIPTION OF COMPONENTS. (CONT)

AUX RECEIVER ANTENNA SYSTEMS

The antennas for the Auxiliary Receiver R-442 consist of three whip antenna elements (MS-116A, MS-117A, and MS-118A), a tip cap, the tiedown assembly (not illustrated), an adaptor (UG-273/U) and a base (AB-15/GR or AB-558/GR). The base has no tuning circuits.

The upper section of both bases have a shaft with a spring section. The spring section allows the antenna elements to bend easily when the antenna strikes an obstruction. Both bases have a ground strap assembly which consists of a ground wire and a ground clamp. The ground ring rests on a rubber washer. After the antenna is mounted, the ground clamp completes the ground when connected to the Adaptor UG-273/U.

The antenna elements are used to collect (receive) signals.

The Adaptor UG-273/U is needed to connect the aux receiver rf cable to the antenna base jack.

The Adaptor UG-306/U is an optional adaptor used in some installations. This optional adaptor is used when a right-angle connection is required to prevent damage to rf cable.

NOTE

The Antenna Element AT-1095/VRC may be substituted for the normally used three elements (MS-116A, MS-117A, and MS-118A).
1-11. DESCRIPTION OF COMPONENTS. (CONT)

MOUNTING MT-1029/VRC

The Mounting MT-1029/VRC is used to hold the RT-246/VRC and RT-524/VRC in a vehicle.

The MT-1029/VRC consists of an upper tray and a lower base. They are connected to each other by five bolts and shock absorber assemblies. A grounding strap is connected between the upper tray and lower base to insure good grounding. (Earlier models (before 1973) have two grounding straps.)

The lower base is bolted to the radio shelf of the vehicle. The upper tray has two thumbscrews and clamp assemblies. These lock the RT in place. Two guide pins at the rear of the upper tray aid in holding the RT. They insure the proper alinement of the RT’s star plug (P401) with the mount jack (J24).

A gasket-sealed junction box (J-box) is at the left side at the MT-1029/VRC rear wall. The RT jack, J24, is on the front of the J-box. There are three jacks on the bottom. From left to right, is a power input jack, J21, an additional equipment convenience jack, J22, and a power outlet jack, J23.

The J-box obtains RT operating voltage (22 to 30 vdc) from the vehicle electrical system at J21 and applies it to the RT at J24. The J-box jacks, J22 and J23, also distribute power, control, and signal voltages between the installed RT and other equipment of the vehicle’s communication system.

The earlier models (before 1973) have a 100-ampere fuse (as part of the J-box cover) for protection of the vehicle electrical system.

A vent (opening) is at the center of the rear wall. The vent alines with the installed RT exhaust blower. The vent and the exhaust blower must be kept clear of any obstructions to insure proper cooling of the RT.

Vinson speech-secure equipment (TSEC/KY-57) can be connected to the RT when interconnecting box J-3513/U is installed between the mount’s upper tray and the lower base.
1-11. DESCRIPTION OF COMPONENTS. (CONT)

MOUNTING MT-1898/VRC

The Mounting MT-1898/VRC is used to hold the Aux Receiver R-442/VRC in a vehicle.

The MT-1898/VRC consists of an upper tray and a lower base. They are connected to each other by four bolts and shock absorber assemblies. A grounding strap is connected between the upper tray and lower base to insure good grounding.

The lower base is bolted to the radio shelf of the vehicle. The upper tray has one thumbscrew and clamp assembly. It locks the R-442/VRC. Two guide pins at the rear of the upper tray aid in holding the R-442/VRC. They insure the proper alinement of the R-442/VRC rear plug (P201) with the mount jack (J14).

A gasket-sealed junction box (J-box) is at the center of the MT-1898/VRC rear wall. The R-442/VRC jack (J14) is on the front of the J-box. There are three jacks on the bottom. From left to right, is a power input jack (J11), an additional equipment convenience jack (J12), and a power outlet jack (J13).

The J-box obtains operating voltage (22 to 30 vdc) from the A-RT mount through its power input jack, J11. Jacks J12 and J13 also distribute power and signal voltages between the installed R-442/VRC and other equipment of the vehicle’s communication system.

Vinson speech-secure equipment (TSEC/KY-57) can be connected to the receiver when interconnecting box J-3514/U is installed between the mount’s upper tray and the lower base.
1-11. DESCRIPTION OF COMPONENTS. (CONT)

FREQUENCY SELECTOR CONTROL BOX C-2742/VRC

The Control Frequency Selector (Remote Box) C-2742/VRC is used exclusively with the RT-246/VRC. It permits three remote functions: remote RT-246/VRC input power control, remote selection of RT-246 rf transmit power level (low or high), and remote selection of any one of ten preset frequencies.

In some configurations, two C-2742/VRC boxes can connect in tandem. In this case, the C-2742/VRC directly connected to the RT-246/VRC is called the primary C-2742/VRC. The one connected to the primary C-2742/VRC is called the tandem C-2742/VRC. Only one C-2742/VRC at a time can be used to remotely select the RT-246/VRC rf transmit level and preset channel frequency.

The primary C-2742/VRC (J71) provides a connection to the RT-246/VRC. When it is a tandem C-2742/VRC, J71 provides a connection to the primary C-2742/VRC, jack, J72. When it is a tandem C-2742/VRC, J72 has no connection.

The C-2742/VRC PWR (power) switch is used to turn the RT-246/VRC on and off (HI/LO and OFF). It also selects the RT-246/VRC rf transmit power level (HI or LO). Only a primary C-2742/VRC PWR switch can be used to turn the RT-246/VRC on and off.

The SW (toggle) switch is used to establish remote control at a specific remote box. This switch is spring-held in its forward position. When the primary C-2742/VRC power switch is at HI or LO (RT-246/VRC is on) pushing and releasing the switch establishes the remote selection of RT-246/VRC transmit rf power level. It also establishes remote selection of preset channel frequency at the C-2742/VRC whose SW switch is activated.

The CONTROL lamp is located on the C-2742/VRC front panel. It lights to indicate the controlling remote box. (When in tandem, only one control lamp should be lit at one time.)

The CHAN SEL (channel selector) is a ten position switch with write-in spaces for each position. Progressing clockwise, the lower left write-in position corresponds with pushbutton number 1, the next write-in position corresponds with pushbutton number 2, the next with number 3, and so forth, to the lower right write-in position, which corresponds with pushbutton number 10.
1-11. DESCRIPTION OF COMPONENTS. (CONT)

RADIO RELAY CONTROL BOX C-2299/VRC

The Radio Relay Control Box C-2299/VRC is used between receiver-transmitters of radio sets AN/VRC-45 and AN/VRC-49. In these configurations, the C-2299 provides for automatic radio relay (retransmission) operation for distant radio stations that are too far apart to communicate directly with each other. The C-2299 has a different function in the six other AN/VRC-12 radio sets installed in wheeled vehicles. It can be used to extend an RT’s audio accessory functions to a more convenient location in the vehicle.

Jack J701 (on the left side of C-2299) provides a connection to the installed A-RT’s MT-1029 (J22) for all eight configurations.

Jack J702 (on the right side of C-2299) provides a connection to the installed C-RT’s MT-1029 (J22) for configurations AN/VRC-45 and AN/VRC-49.

The RETRANS switch (on the front panel) provides relay or independent operation of the two RT’s in the AN/VRC-45 or AN/VRC-49 configuration. When at OFF, independent operation of the two RT’s is provided by the audio accessories connected to the five-pin audio jacks, J703 and J704 (on the bottom). When the RETRANS is ON, automatic relay operation is provided, but the independent operation is not.

The RAD TRANS switch (on the front panel) provides for selection of the RT to be independently operated (RETRANS at OFF). Position 1 selects the A-RT. Position 2 select the C-RT.

For independent operation, J703 and J704 connect the audio accessories to the selected RT. (These jacks are wired in parallel and will accommodate a variety of audio accessory types.)

The VOLUME control (on bottom) provides for adjusting the loudness of audio signals heard from the audio reproducer connected to the C-2299.

For AN/VRC-12, -43, -46, -47 and -48 configurations, the C-2299 can be used to extend the audio accessory functions of the A-RT. (Audio reproducer function of R-442’s cannot be extended to a C-2299.) When this is the case, the C-2299’s RETRANS switch remains at OFF and RAD TRANS switch remains at 1.
1-11. DESCRIPTION OF COMPONENTS. (CONT)

AUDIO ACCESSORIES

Typical audio accessories include a loudspeaker, microphone, headset and a handset. They allow the crewmembers use of the vehicular communication system.

The dynamic microphone (M-80/U) is provided with a push-to-talk/release-to-listen (key) switch.

Typical handsets are the H-189/GR and the H-250/U. They are provided with a microphone, an earphone and a push-to-talk/release-to-listen (key) switch.

The Headsets H-140/ and H-251/U and the Loudspeaker LS-454/U are audio reproducers only.

The Headset H-161/U consists of a microphone, earphone and a key switch. The key switch has three positions. The center position, OFF, has a release-to-listen action. The RAD position has a spring-loaded, push-to-talk action. INT is not used in wheeled vehicles.

All the audio accessories may be connected to the C-2299/VRC or the audio jacks on the radio components.

AUDIO ACCESSORY CONNECTIONS: See [FO-1]
1-12. LOCATION OF MAJOR COMPONENTS AND CABLING FOR M882.

NOTE

The vehicles described in this manual have the ability to have Vinson Security Equipment installed. See TM 11-5820-312-12 for installation and operation. See paragraph 1-11 for complete functions.

The M662 is a 1 1/4-ton, general purpose cargo truck. It has an installed communications equipment rack. The AN/VRC-12 series radio set used for this vehicle can be the AN/VRC-46 (shown), -12 or -47. The Radio Control Box C-2299/VRC, Loudspeaker LS-454/U and the special switch box assembly complete the radio communication set.

The RT-524/VRC (AN/VRC-46) is on the lower center mounting surface of the equipment rack just behind the cab in the rear of the truck.

The Antenna AS-1729/VRC (or AT-912/VRC) is secured to the antenna support assembly. The antenna support assembly is mounted to the curbside center of the outer panel of the vehicle.

The Radio Control Box C-229/VRC is mounted between the loudspeaker and the switch box on the curbside dashboard. The switch box is to the left. The loudspeaker is to the right.

The switch box remotely controls the power to the RT (ON and OFF). The front panel contains an indicator lamp which lights when the RT is keyed.

CABLING: See chapter 4, section III, and paragraph 3-22.
1-13. LOCATION OF MAJOR COMPONENTS AND CABLING FOR M151.

The M151 is a ¼-ton utility truck (jeep) used for transporting personnel and general cargo. The AN/VRC-12 series radio sets used for this vehicle can be the AN/VRC-12 (shown), or AN/VRC-43 through 49. The Radio Control Box C-2299/VRC, the Frequency Selector Box C-2742/VRC and the Loudspeaker LS-454/U complete the AN/VRC-12 radio set.

The RT-246/VRC and the R-442/VRC (AN/VRC-12) are mounted on the rear curbside fender (sponson) directly behind the passenger seat. The R-442/VRC is to the right of the RT-246/VRC.

The M151 dashboard has the Radio Control Box C-2299/VRC, the Frequency Selector Box C-2742/VRC and the Loudspeaker LS-454/U mounted to it. The C-2742/VRC is usually mounted on top of the C-2299/VRC, right of the driver’s seat. The Loudspeaker LS-454/U is to the far right, in front of the passenger seat.

The RT antenna and the aux receiver antenna are each secured to an antenna support assembly. The AS-1729/VRC (or AT-912/VRC) is mounted at the curbside rear. The Aux Receiver Antenna System AB-15/GR (or AB-558/GR) is mounted curbside next to the RT.

CABLING: See chapter 2, section III, and paragraph 3-22.
1-14. DIFFERENCES BETWEEN MODELS.

RECEIVER-TRANSMITTERS: RT-524/VRC AND RT-524A/VRC
RT-246/VRC AND RT-246A/VRC

RT-524/VRC OR RT-246/VRC

Has handles over small guards.

RT-524A/VRC OR RT-246A/VRC

Has larger, stronger guards which can be used as handles.

RECEIVER-TRANSMITTERS RT-524(*)/VRC AND RT-246(*)/VRC

RT-524(*)/VRC

Has a built-in loudspeaker and a speaker switch.

RT-246(*)/VRC

Has pushbutton remote and tuning control capability and doesn’t have a built-in loudspeaker.
1-14. DIFFERENCES BETWEEN MODELS. (CONT)

AUXILIARY RECEIVERS R-442/VRC AND R-442A/VRC

All features of the R-442/VRC and the R-442A/VRC are the same except the R-442A/VRC has the same tuner voltage regulator as the RT-524A/VRC or the RT-246A/VRC.

MOUNTS MT-1029/VRC AND MT-1898/VRC:

PRIOR TO 1973

The J-box cover has a fuse. In addition, the captive screws of the cover are the slotted type.

There are two grounding straps (in MT-1029 only).

1973 AND AFTER

The J-box cover has no fuse and the captive screws are phillips-head type.

There is one grounding strap.
1-14. DIFFERENCES BETWEEN MODELS. (CONT)

MOUNT MT-1029/VRC: WITH AND WITHOUT VINSON J-BOX J-3513/U (NO FUSE)

The Vinson J-box J-3513/U is mounted on the shock absorbers, sandwiched between the base and the tray of the mounting MT-1029/VRC. The Vinson plug (P1) connects with mounting jack (J22). There is no ground strap used with the Vinson J-box. A wire is added between J14 Pin C and J12 Pin C inside the mount J-box.

MOUNT MT-1898/VRC: WITH AND WITHOUT VINSON J-BOX J-3514/U

The Vinson J-box J-3514/U is mounted on the shock absorbers, sandwiched between the base and the tray of the mounting MT-1898/VRC. The Vinson plug (P1) connects with the mounting jack (J12). There is no ground strap used with the Vinson J-box. A wire is added between J14 Pin C and J12 Pin C inside the mount J-box (for details, see TM 11-5810-312-12).
1-15. SAFETY, CARE AND HANDLING.

Make sure the RT mounting clamp assemblies are locked to hold the radio component securely in the radio mount while the vehicle is in motion. Do not set the receiver-transmitter on the rear of the unit. The blower assembly may be damaged by such things as stones, metal objects and mud lying on the ground or floor.

When removing the receiver-transmitter or receiver from the RT mounting, pull it straight out and then put the electrical connector cover on all exposed radio jacks of the mount to protect the jack pins from the effects of weather and dirt.

Make sure radio set is turned off before starting vehicle.

When using radio equipment for prolonged periods of time (more than 15 minutes) make sure vehicle is running, or battery may become discharged.

Do not use radio components for steps, or cables for handrails.
Section III PRINCIPLES OF OPERATION

1-16. GENERAL.

This section covers the principles of operation of the AN/VRC-12 series radio sets as installed in wheeled vehicles. DC power is traced from its source to each radio component of the AN/VRC-12 configurations, and to associated equipment.

The RT and R-442 receive signal paths are discussed, followed by RT keying and loudspeaker muting. Also covered are transmitted signal paths within the RT, and RT-246 servo tuning and remote RT-246 operation from Remote Box C-2742/VRC.

1-17. A-RT DC POWER INPUT AND DISTRIBUTION.

All eight AN/VRC-12 series radio sets have an A-RT. It is the radio component that receives its dc power through the mount connected directly to the vehicle's batteries. The A-RT requires an operating voltage of between 22 and 30 vdc. The dc power is applied from the batteries through Power Cable CX-4720 to Mount MT-1029. The mount then distributes dc power to the A-RT and other components of the radio set.
A-RT DC POWER INPUT AND DISTRIBUTION. (CONT)

(Refer to FO-1 (lower left corner).) Two 12-volt batteries, connected in series, apply positive 22 to 30 vdc through the WHITE/RED lead of the Power Cable CX-4720, to Pin B of P21. Since the negative side of the battery is grounded, ground is applied through the BLACK/GREEN lead of CX-4720 to Pin A of P21. P21 connects CX-4720 to Jack J21 of the mount.

IN THE MOUNT, Pin A of J21 is wired directly to Pins A of Jacks J22, J23 and J24, providing these pins with a path to ground. The positive 22 to 30 vdc is applied from Pin B of J21 through E21 on the terminal board and 100-amp Fuse F11 to E24 on the terminal board.

NOTE

From E24, 22 to 30 vdc is applied directly to Pins B of Jacks J22, J23 and J24.

Before the A-RT can operate, the dc input power must be applied to Pin B and Pin J of J24. This can happen only if the metal LINK on TB-21 is set between Terminal Screws E23 and E24 (direct).

WHEN THE A-RT IS IN ITS MOUNT, P401 connects with J24. DC input power is applied to the RT in the following manner:

1. Pin B of J24 applies 22 to 30 vdc through Pin B of P401 to Contacts 4 and 5 of Power Control Relay K404.
2. Pin J of J24 applies 22 to 30 vdc through Pin J of P401 and Diode CR411 to Pin 7 of Power Control Relay K404.
3. Pin A of J24 provides a ground path to Pin A of P401, which then provides ground to the radio chassis.

CR411 is a reverse-polarity-protect diode. It prevents K404 from energizing (turning on) if the voltage polarity is reversed.

CAUTION

Source voltage polarity reversal is often caused by connecting the power cable leads to the wrong battery terminal. Reversed polarity will damage mount.

When the polarity is correct and the A-RT’s POWER switch is set to OFF, the power input circuit is open. K404 is not energized. However, when the A-RT’s POWER switch is set to LOW or HIGH, a path from K404 Pin 2 to ground is completed. The relay energizes and stays energized until the A-RT’s POWER switch is set to OFF.

When the relay energizes, Contact 6 meets Contact 4, applying 22 to 30 vdc to two paths:

1. Through a 1-amp circuit breaker to Voltage Regulator Assembly A2100. When the RT’s LIGHT switch is set to ON, dc power is applied to the dial lamp and the CALL lamp.
2. Through a 15-amp circuit breaker to the ANTENNA FREQ CONTROL circuit. (See para 1-19).
1-17. A-RT DC POWER INPUT AND DISTRIBUTION. (CONT)

Additionally, energized relay Contact 3 meets Contact 5, sending 22 to 30 vdc through Pin C of P401 back into the mount. This voltage is applied to the mount at Pin C of J24 from which it is wired directly to Pin C of Jack J22, and Pin C of Jack J23.

J22 and J23 of the A-RT’s mount provide a central distribution point for dc power to additional components of the radio set. Any components wired to Pin C of J22 or J23 can only be turned on when the A-RT is turned on. Components wired to Pin B receive dc power independent of the A-RT.

1-18. B-RECEIVER, C-RECEIVER AND C-RT POWER INPUT CIRCUIT.

NOTE

Refer to paragraph 1-11, for details covering various configurations.

In six of the AN/VRC-12 series radio set configurations, a B-Receiver (-12, -44, -47, and -48) or C-RT (-45 and -49) is connected to the A-RT’s mount, using Power Distribution Cable CX-4721. In two of these configurations (-44 and -48), a C-Receiver is connected to the B-Receiver mount, using an additional CX-4721. In these six configurations, the A-RT’s mount distributes dc power to the additional radio components. Power distribution to additional radio components can be DIRECT or REMOTE.

DIRECT

When an additional radio component’s mount (consisting of a C- and/or B-receiver, or a C-RT) is set up for DIRECT operation, the additional radio component gets its power directly from the batteries. Therefore, the additional component operates whether or not the A-RT is in its mount.

REMOTE

Normally, the mounts for additional radio components are set up for REMOTE operation. In this mode, power comes from the A-RT, so it must be in its mount and turned on for additional radio components to operate.
1-18. B-RECEIVER, C-RECEIVER AND C-RT POWER INPUT CIRCUIT. (CONT)

Whether an additional radio component is setup for DIRECT or REMOTE operation, 22 to 30 vdc is applied from the A-RT’s Mount MT-1029, through CX-4721 to B-Receiver Mount MT-1898, or C-RT Mount MT-1029. These mounts apply the voltage to their respective radio component. The B-Receiver mount applies 22 to 30 vdc to the C-Receiver, through the C-Receiver Mount MT-1898, and another CX-4721.

(Refer to [FO-1]) DC input power is applied from J23 on the A-RT mount to P23 of Cable CX-4721. A ground path is provided to Pin A of P23 from Pin A of J23. Pin B of J23 applies 22 to 30 vdc to Pin B of P23. A-RT controlled Pin C of J23 also applies 22 to 30 volts to CX-4721 at Pin C of P23. In this case, the A-RT must be in its mount with its power on.

(Refer to [FO-2 (lower left corner).) Connector P11 of CX-4721 applies dc input power to J11 of B-Receiver Mount MT-1898. The ground path is provided to Pin A of J11 from Pin A of P11. From Pin A of J11, a ground wire goes directly to Pins A of Jacks J12, J13 and J14. When the B-Receiver is in its mount, J14 connects to P201. Pin A of J14 provides a ground path to Pin A of P201, which then provides ground to the radio chassis.

REMOTE POWER INPUT

Assume that the B-Receiver’s mount link is set between E12 and E13 (its REMOTE position), and that the A-RT is in its mount with power ON. The A-RT controlled 22 to 30 volts is applied from Pin C of P11 through Pin C of J11 to both E12 on the terminal board and Pin C of J13. The A-RT controlled 22 to 30 volts is applied from E12 through E13 and Pin C of J14 to Pin C of P201. Now inside the R-442, the input power is applied through reverse-polarity-protect Diode CR101 (see note in para 1-17), and Circuit Breaker CB101 (POWER switch) to Voltage Regulator Assembly A2100. When the R-442’s LIGHT switch is set to ON, dc input power is applied to the dial lamp and CALL lamp.

DIRECT POWER INPUT

Now, assume that the B-Receiver’s link is set between E13 and E14 (its DIRECT position). Pin B of P11 applies 22 to 30 vdc through Pin B of J11 and Fuse F11 to E14.

NOTE

F11 appears only in mounts produced before 1973. In mounts produced in 1973 and after, Pin B of J11 is wired directly to E14.

From E14, 22 to 30 vdc is applied through E13 to Pin C of J14. Pin C of J14 applies this input voltage to Pin C of P201 and power is supplied to the R-442 as described under Remote Power Input.

E14 also supplies 22 to 30 vdc to Pin B of J13, where it maybe used to apply input power to a C-Receiver.
1-19. ANTENNA MATCHING UNIT, PURPOSE AND CONTROL.

The antenna matching unit contains ten tuning circuits. These circuits tune the antenna elements to the RT’s operating frequency, to minimize reflected power. The operator uses the RT’s tuning controls to select the operating frequency. Initially, the BAND switch applies voltage to certain pins in the antenna control jack. This voltage is then applied to the selecting mechanism in the matching unit to initially select the matching unit’s tuned circuit. The MC control operates a cam switch, which also applies voltage to specific pins of the antenna control (ANT CONT) jack to position the selecting mechanism to a specific tuned circuit in the matching unit. The ANT CONT jack pins apply 22 to 30 vdc to specific conductors of Cable CX-4722. The cable applies this voltage to the antenna matching unit through Plug P2. For each frequency setting, certain pins in the plug have voltage applied while other pins must beat zero volts. The selecting mechanism in the antenna matching unit then connects the proper antenna tuning circuits to the antenna elements.

THE TRANSMITTED SIGNAL

When the RT is used as a transmitter, the rf output travels from the RT’s antenna (ANT) jack through rf Cable CG-1773 and into the matching unit at Jack J1. The rf input at J1 passes through the matching unit to the antenna elements, which radiate the rf signals into space. When the antenna elements are properly tuned, rf signal radiation is at a maximum.

THE RECEIVED SIGNAL

When the RT is used as a receiver, the rf input travels in the opposite direction of the transmitted signal. The received signal travels from the antenna elements, through the matching unit, out J1, through Cable CG-1773, and into the RT at the antenna (ANT) jack.

(Refer to [FO-1](#) (box on right side).) In the matching unit, the rotary selector of S1 is electrically and mechanically connected to the switch section of S1. The rotary selector is also mechanically connected to the two switch sections that select the antenna tuning circuits. At Jack J2, Cable CX-4722 connects 22 to 30 vdc to the selector circuit. For an MX-6707, Pins M, L, K and B of J2 are not used. Pin C provides a path to ground and is connected to the matching unit’s chassis. For an MX-6707, Pins N, A, D, E, F, H and J apply voltage to the matching unit circuitry.

The Antenna Matching Unit Control Voltage Chart (left side of [FO-1](#)) lists those pins which must have voltage applied to them and those which must have no voltage applied to them in order to select a particular antenna tuning circuit. For example, if the RT is tuned to 32 MHz, Pins N, A and D of J2 should have 22 to 30 vdc applied and Pins C, E, F, H and J should have zero volts applied.
1-19. ANTENNA MATCHING UNIT, PURPOSE AND CONTROL. (CONT)

When the voltages applied to the pins of J2 are changed, the rotary selector turns. The action of the rotary selector causes its switch section to turn. The two switch segments connecting the tuning circuit to the antenna elements also turn. Each segment turns one step at a time, until the proper tuned circuit is selected.

1-20. RECEIVER SIGNAL PATH.

The receiver signal path is the same in both the RT and the R-442. FM signals are intercepted by the antenna and pass through Cable CG-1773 into the radio component of the antenna (ANT) jack. Assemblies A1000 through A5000 make up the receiver’s internal receive signal path. Here, a selected FM signal is processed and unwanted frequencies filtered out before the voice signal is recovered. The recovered voice signals are then sent through the AUDIO output jack to a loudspeaker or phone.

(Refer to [FO-2]) The receiver’s assemblies must have dc voltage applied to them in order to operate. When the POWER-ON-RESET switch is set to ON, 22 to 30 vdc is applied to Voltage Regulator Assembly A2100. (See para 1-17) A2100 reduces the 22 to 30 vdc to 16 vdc and applies the reduced or regulated voltage directly to Assemblies A1000, A2000, A3000 and A4000. The manner in which this voltage is applied to the A5000 assembly is determined by the setting of the SQUELCH switch, which is covered later in this paragraph.

All AN/VRC-12 radio components are tunable in 50-kHz steps over the frequency range of 30.00 to 75.95 MHz. A total of 920 channels are available. The BAND switch and gear train connect all tunable components to the MC-TUNE-KC switches.

A1000 ASSEMBLY

In RCVR RF Assembly A1000, frequencies other than the selected frequency are rejected while the selected FM input is amplified. The FM input is then mixed with the output of a local oscillator to produce a constant 11.5-MHz intermediate frequency (if.). When the radio is in BAND A (30.00 to 52.95 MHz), the local oscillator generates a frequency which is 11.5 MHz above the dialed frequency. Refer to the following diagram.
1-20. RECEIVER SIGNAL PATH. (CONT)

A1000 ASSEMBLY (CONT)

When the receiver is tuned to 30 MHz, the tuning and amplification circuits will process only a 30.00-MHz rf input. The local oscillator generates 41.50 MHz. The mixer output is the difference between the local oscillator frequency and the rf input frequency (41.50 MHz minus 30.00 MHz equals 11.5 MHz), the if.

When the radio is in BAND B, the local oscillator generates a frequency 11.5 MHz below the dialed frequency. Thus, a dialed frequency of 65.00 MHz will cause the local oscillator to generate 53.50 MHz (65.00 MHz minus 53.50 MHz equals 11.5 MHz).

CRYSTAL REFERENCE SYSTEM

(Refer to FO-2). The local oscillator of RCVR Assembly A1000 is locked on frequency by an automatic frequency control (AFC) network, called the Crystal Reference System (CRS). If the local oscillator drifts even slightly from the correct frequency, the receiver’s audio output will fade in and out. CRS Assembly A300 compares the local oscillator output with a very stable, accurate frequency from the Oscillator Assembly A2000. The A2000’s frequency is established by the dial setting.

When the local oscillator’s frequency is offset from the dial frequency by exactly 11.5 MHz, no signal is sent from the A3000 back to the local oscillator. But if the local oscillator’s frequency is wrong, the A3000 sends a dc error signal back to the oscillator, correcting its frequency.

A4000 ASSEMBLY

The frequency-modulated if. (11.5 MHz) is applied from the RCVR RF Assembly A1000 to if. Assembly A4000. Three things happen in this assembly:

1. The if, is amplified.
2. Carrier noise (static) is eliminated.
3. Message or audio signals are recovered from the if signals.
X-MODE-NORMAL SWITCH

The A4000 assembly output signal passes through the X-MODE-NORMAL switch. When speech-
securing equipment is used, the A4000’s output is scrambled (coded) audio. Scrambled audio must
be applied through the X-MODE switch (X-MODE position) to speech-decoding equipment. Without
speech-securing equipment, normal audio signals are outputted from the A4000 and applied directly
to the A5000.

NOTE

In the R-442, the X-MODE-NORMAL switch is always set to the NORMAL position when speech-
securing equipment is not connected. Switch must be in X-MODE when speech-securing equipment is connected.

X-MODE Position: The X-MODE-NORMAL switch is set to the X-MODE position when speech-securing
equipment is used. The signal exits the R-442 at P201, Pin E. Pin E of P201 passes the signal to Pin E
of J14 on the mount. Pin E of J14 then passes the signal to Pin E (X-MODE OUT) of Jack J12. From
there the signal is applied to a speech-decoding device whose output is applied back to Pin D of J12.
Pin D connects to Pin L of R-442 Plug 201. From Pin L the signal is applied to A5000 for amplification.

NOTE

In X-MODE, the RT passes the signal through the X-MODE-NORMAL switch to Pin C of X-MODE
Jack J354. (Refer to page 40-1.)

NORMAL Position: When the X-MODE-NORMAL switch is set to the NORMAL position, the audio signal
passes through the switch to Assembly A5000.

A5000 ASSEMBLY

The A5000 assembly consists of:

1. The af section.
2. Muting relay.
3. The squelch section.

The squelch section operates only when the SQUELCH switch is placed in NEW ON or OLD ON;
therefore, the af section is covered first, followed by details of the squelch function.

Af Section

The af section of the A5000 assembly accepts low-level audio inputs from the A4000, and amplifies
them to provide three audio outputs:

1. Monitor out.
2. Phone out.
3. Speaker out.

Monitor out is applied from the af section to Pin K of R-442 Plug P201, Pin K of J14 in the mount, and
Pin K of J12 in the mount. The monitor out audio is fixed level (i.e., it is unaffected by the position of
the volume control). This signal is used to provide audio input to additional equipment which requires
fixed level audio input.
1-20. RECEIVER SIGNAL PATH. (CONT)

Af Section (Cont)

Phone out is applied from the af section to Pin B of R-442 Audio Jacks J103 and J104 and also to Plug P201 Pin S. From there it is applied to Pin S of J14 in the mount; then to Pin H of J12 in the mount. The phone out audio level is controlled by the R-442 VOLUME control. This signal is used to provide audio to other items of equipment.

Speaker out is applied from the af section, through Muting Relay K5001 to Pin E of Audio Jacks J103 and J104 and also to Plug P201 Pin F. From there it is applied to Pin F of J14 in the mount; then to Pin J of J12 in the mount. The speaker out audio level is like the phone out, controlled by the R-442 VOLUME control. This signal is used to provide audio to other items of equipment.

NOTE

For information covering the application of the three audio outputs to additional items of equipment (i.e. AN/VIC-1), refer to [TM 11-5820-401-20-2].

Muting Relay

The function of the muting relay is covered in paragraph 1-22.

Squelch Section

The squelch section includes the following:

1. The SQUELCH switch.
2. The Squelch Section A5000.
3. The CALL lamp.

SQUELCH Switch. The SQUELCH switch manually turns the squelch function on and off. In both OFF positions, the af section receives 16-vdc operating power from the Squelch Section A5000 on a constant basis.

In the NEW ON position, 16 vdc is applied to the af section only when a 150-Hz signal is applied to the Squelch Section A5000.

In the OLD ON position, 16 vdc is applied to the af section only when the R-442 receives an rf signal (carrier).

Squelch Section A5000. The Squelch Section A5000 provides 16-vdc operating power to the AF Section A5000. The Squelch Section A5000 receives inputs from the A4000, but only recognizes them when the SQUELCH switch is set to OLD ON or NEW ON.

Connected to the Squelch Section A5000 through Pin F of J12 on the mount, is the SQUELCH DISABLE OUT. When speech-securing equipment is used, this circuit remotely controls the squelch function, causing the Squelch Section A5000 to output 16 vdc to the af section.
1-20. RECEIVER SIGNAL PATH. (CONT)

CALL Lamp. The CALL lamp provides a visual indication of a received signal, and comes on only in the SQUELCH switch NEW ON or OLD ON positions when:

1. A 150-Hz signal is applied to the Squelch Section A5000 in NEW ON operation.

2. An rf signal is received in OLD ON operation.

The CALL lamp comes on when a ground path is provided within the Squelch Section A5000, which occurs in conditions 1 and 2 above.

DIFFERENCES IN RECEIVE SIGNAL PATH/RT’s AND R-442

Although most circuits in the receive signal path are the same in the RT’s and the R-442, there is a major difference in the RT’s X-mode signal path.

R-442 X-Mode

(Refer to [FO-2].) Audio signals are applied to the X-mode pin of the A4000 NORMAL/X-MODE switch, and then to Pin E of Plug P201. From P201, audio signals are applied to J14 and J12 in the mount. Therefore, in the X-mode, no audio is applied to the A5000 for amplification.

RT X-Mode

(Refer to [FO-1].) Audio signals are applied to the X-mode pin of the A4000 NORMAL/X-MODE switch, and then to Pin A at the X-mode jack on the front panel, instead of at the mount as in the case of the R-442.

From Pin A, the audio signals are applied to Pin C through the installed X-mode plug. From Pin C the signals are applied to the af section of the A5000 for amplification. Included with the audio signals are the 150-Hz NEW SQUELCH signals, which are applied to the K401 keying relay, and to the squelch section of the A5000.

In the RT’s, when the A4000 NORMAL/X-MODE switch is in the X-MODE position and the X-mode plug is installed, the effect is as though the X-MODE switch were in the NORMAL position.

INTERNAL SPEAKER/RT-524

(Refer to [FO-1].) Amplified SPEAKER audio signals are applied to the K5001 muting relay from the af section of the A5000. From the relay, the signals pass through the closed SPEAKER switch to the internal loudspeaker.

ATTENUATED PHONE AUDIO/RETRANSMIT R/W JACK-RT’S ONLY

(Refer to [FO-1].) PHONE audio signals are available at Pin B of the RT’s front panel RETRANSMIT R/W jack and at Pin B of the SPKR jack. However, the signal at the RETRANSMIT R/W jack is attenuated (lower voltage) to prevent overdriving certain external equipment that can be connected to the jack.
1-21. RT KEYING AND LOUDSPEAKER MUTING CIRCUIT.

Keying turns the RT's transmitter on and its receiver off. When its power is first turned on, the RT functions as a receiver. For the RT to function as a transmitter, the operator must press in the push-to-talk (key) switch on the microphone. The microphone is normally connected to the RT at the RETRANSMIT RW jack.

NOTE

Keying may also be accomplished from a REMOTE location in a vehicle by extending the keying circuit to an auxiliary component. An example is Relay Box C-2299, which is covered in paragraph 1-24.

When the operator keys the microphone (transmits), the following occurs:

1. The blower runs.
2. RF is produced.
3. The CALL lamp is off.
4. The audio reproducers are quiet (except for possibly a 150-Hz tone).

When the operator unkeys the microphone, the radio functions as a receiver. The transmitter no longer produces rf, and the blower stops running, unless the RT is overheated. A thermostat in the RT will cause the blower motor to stop when the RT reaches a safe temperature.

(Refer to FO-1.) The RT switches from receiver to transmitter and back again through the actions of several relays. The radio's power must be on for them to operate.

KEYING CIRCUIT

Relays K401 and K405 are energized by keying the microphone, which provides them with a path to ground. When energized, K405 prevents the RT's CALL lamp from lighting. The energized K401 performs two functions:

1. It passes the 150-Hz squelch tone to the transmitter's modulator, except when the SQUELCH switch is set to OLD ON.
2. It energizes K402 and K403 by providing them with operating voltage.

NOTE

In extreme emergency conditions K401 may be reversed if one set of contacts is burned out. Normally K401 should be replaced, not reversed. Reversing the relay will not correct armature or other problems. Also secure communications cannot be maintained if K401 is reversed.
1-21. **RT KEYING AND LOUDSPEAKER MUTING CIRCUIT.** (CONT)

The energized K403 supplies operating voltage to the RT’s transmitter assemblies, and K402 mutes the speaker by providing a ground path for associated muting circuitry.

Keying also turns on Power Supply Assembly A9000. A9000 provides -14 to -21 vdc, +275 vdc and 700 vdc to the A6000 assembly and 115 vdc to operate the blower.

When Keying Relay K401 energizes during transmit operation, it supplies dc operating voltage to Antenna Coax Relay K301. The K301 relay energizes, grounding the receive signal path and connecting the transmitter’s rf output to the RT antenna jack.

RT LOUDSPEAKER MUTING CIRCUIT

When energized, K402 provides a ground for K5001, K5001 then energizes, muting the RT’s speaker. This muting ground is also applied from K402 to Pin D of P401. Pin D of P401 connects to Pin D of J24 on the mount. Pin D of J24 connects to Pin D (RCVR SPKR MUTE) of J23 through CR21. This connection provides muting ground for all auxiliary receivers (see para 1-22). Diode CR21 prevents feedback from the auxiliary receivers which would mute the RT.

1-22. **AUXILIARY RECEIVER LOUDSPEAKER MUTING CIRCUIT.**

The A-RT provides muting ground through J23 of its mount, Cable CX-4721, and J11 of the B-Receiver’s mount, into the B-Receiver. When the radio set includes a C-Receiver, the muting ground is extended from J13 of the B-Receiver’s mount to J11 of the C-Receiver’s mount, and on to the C-Receiver. To provide muting ground, the A-RT must be keyed. (See para 1-21)

(Refer to FO-2 (lower left corner).) Muting ground is provided to Jack J11 of the B-Receiver’s mount by P11 of Cable CX-4721. Pin D of P11 applies muting ground through Pin D of J11 to Pins D of J13 (RCVR SPKR MUTE OUT) and J14 (RCVR SPKR MUTE IN). Pin D of J14 provides muting ground to Pin D of P201, which applies it to the R-442’s Muting Relay K5001. K5001 mutes the R-442’s speaker when it is energized.

Pin D of J13 extends the ground to J11 of the C-Receiver, which is muted the same way as the B-Receiver,
RF GENERATION

When the RT's mike is keyed, the A6000 assembly produces an rf signal whose frequency should be identical to the one dialed on the MC-TUNE-KC controls. This rf signal exits the RT through the antenna. The operating voltage for the A6000 assembly is supplied by the A9000 assembly.

AUTOMATIC FREQUENCY CONTROL (AFC) CIRCUITS

The rf signal exiting the antenna must be exactly at the frequency selected by the MC-TUNE-KC controls. If the rf signal is more than ± 4 kHz from the selected frequency, problems in transmission will result. To maintain correct transmission frequency, an automatic frequency control (AFC) system is used. This system senses any error in transmitted frequency and automatically corrects it.

Correction of the transmitted frequency is done in two ways. For small errors in frequency, fine tuning is accomplished by AFC 2. Larger errors (± 20 kHz) are corrected by AFC 1. AFC 1 normally works only when the transmitter is initially keyed.

AFC 1

(Refer to FO-3.) A sample of the A6000's rf signal is applied to the A1000 to check its accuracy. If the rf signal is more than ± 20 kHz from the MC-TUNE-KC setting, the A1000 applies a signal to the A4000 which the A4000 rejects by a filtering process. When the A4000 rejects this input, it turns off a control signal which is normally applied to the A8000. The absence of this control signal (AFC 1) causes the A8000 to output a very strong coarse tune signal, applied to A6000 to correct its frequency.
AFC 2

(Refer to FO-1.) A sample of the A6000's rf signal is applied to the A1000 to check its accuracy. The A1000 mixes this signal with a precise, fixed frequency signal, generated within the A1000, to produce an if. signal which approximately equals 11.5 MHz. If the transmitted rf signal is not exactly on frequency, the 11.5 MHz signal will be off by the same amount. This if. signal is applied to the A8000. Within the A8000, the signal approximately equaling 11.5 MHz is compared to another fixed signal generated within the A8000 which exactly equals 11.5 MHz. The difference in the two signals causes the A8000 to output a relatively weak, fine tune signal, applied to the A6000 to correct its frequency.

Turning Off AFC 1

AFC 1 is turned off when the transmitted rf signal is within 20 kHz of the MC-TUNE-KC setting. With AFC 1 turned off, AFC 2 takes over, keeping the transmitted frequency accurate to ± 4 kHz.

VOICE CIRCUIT

(Refer to FO-1.) Voice signals from the keyed microphone pass from Pin D of one of the MIKE jacks to Modulation Assembly A8000.

From here, the voice signal is applied to Pin G of the X-mode Jack J354. The X-mode plug jumps the signal from Pin G to Pin E of the X-mode jack. Pin E of the X-mode jack returns the voice signal to the A5000 assembly where it is amplified. The A8000 assembly applies the voice signal to the XMIT RF A6000 assembly and modulates the rf output. The voice-modulated signal is then sent through the antenna.

SIDETONE CIRCUIT

The RT's sidetone circuit allows the user to hear himself through his headphones. A sample of the A6000's voice-modulated rf output is sent through the receive path, (i.e., the A1000 through A5000 assemblies process the rf output as though it were a received signal, to produce an audio in the headphones). There is a weak voice sidetone from the speaker because it is muted.
1-23. RF GENERATION IN RT, AFC, AND VOICE/150-HZ MODULATION/SIDETONE CIRCUIT. (CONT)

150-HZ MODULATION CIRCUIT

The discussion of the RT’s SQUELCH switch in paragraph 1-20 explained why a 150-Hz tone must modulate the transmitter’s output signal if the distant receiver’s SQUELCH switch is set to NEW ON. To modulate the signal with a 150-Hz tone, the transmitting RT’s SQUELCH switch must be set to OLD OFF, NEW OFF or NEW ON.

(Refer to FO-1) When the RT is keyed, Relay K401 energizes. K401, Contact 2, meets Contact 5. This relay action and the position of the SQUELCH switch (in any position but OLD ON) causes Squelch Assembly A5000 to generate a 150-Hz tone. The 150-Hz tone passes through to contacts of the RT’s SQUELCH switch to modulation assembly A8000. Here, the 150-Hz tone circuit splits into two paths:

1. A feedback path from the A8000 assembly through Pin J of the X-mode jack. A jumper on the X-mode plug connects Pin J to Pin D of the X-mode jack. Pin D then passes the 150-Hz tone back through K401 to Squelch Assembly A5000. The feedback helps the Squelch Assembly A5000 to generate the continuous 150-Hz tone.

2. The other 150-Hz path passes the tone to Modulation Assembly A8000. Here, the 150-Hz tone is amplified and passed to XMIT RF Assembly A6000. The 150-Hz tone modulates the rf signal, which then exits the RT to the antenna.

1-24. AUDIO ACCESSORY EXTENSION USING CONTROL BOX C-2299.

Control Box C-2299 provides radio relay operations for the AN/VRC-45 and AN/VRC-49 configurations. It is also used to extend the RT audio accessory functions for the other six AN/VRC-12 series configurations.

AUDIO ACCESSORY EXTENSION

(Refer to FO-3) With its RETRANS switch in the OFF position, the C-2299 allows the user to operate up to two RT’s from a remote location. The user can receive or transmit from one RT at a time by placing the C-2299 RAD TRANS switch in position 1 or position 2. Only mike keying and audio reception can be remotely controlled. All other functions (except retrans) must be controlled directly at the RT. Control of transmission and reception are described below.

Transmission

When the user keys the microphone and talks, the C-2299 does the following:

1. Provides circuit for keying signal (MIC SW) passage from microphone to RT.
2. Provides circuit for audio signal (AF FROM MIC) passage from microphone to RT A8000 assembly to modulate transmitted rf.

The MIC SW signal applies a ground to either the A-RT or C-RT to key the transmitter. Ground is applied from Terminal A of C-2299 at J703 or J704 through the microphone, to Terminal C. From Terminal C, ground is applied to a segment of the RAD TRANS switch. The RAD TRANS switch, in turn, selects one of two circuits (depending on the RT selected), from which the ground is applied to a corresponding segment in the RETRANS switch.
1-24. AUDIO ACCESSORY EXTENSION USING CONTROL BOX C-2299. (CONT)

Ground is then applied to Pin S of J701 in the C-2299; to Pin S of J22 in the MT-1029; Pin H of P401 in the RT; and then to Pin C within the RT. The ground energizes the K405 retransmit relay and the K401 keying relay, thereby putting the RT into the transmit mode. If the RAD TRANS switch is set to position 1, the A-RT goes into the transmit mode, while the C-RT's received audio outputs are open-circuited at the C-2299 RAD TRANS and RETRANS switches, thus rendering the C-RT effectively inoperative. In position 2 of the RAD TRANS switch, the C-RT transmits while the A-RT’s audio outputs are open-circuited.

Microphone voice signals (AF FROM MIC) are applied to Pin D of J703 or J704 in the C-2299, These signals are then applied to the INPUT pin at the A80 MIC AMPL, where they are amplified. Amplified voice signals exit the A80 at the OUTPUT pin and are applied to a segment of the RAD TRANS switch. In position 1 of the RAD TRANS switch, the voice signals are applied to Pin U of J701, or Pin U of J702.

From Pin U, the signals go to Pin U at J22 of MT-1029; to Pin N of RT Plug P401; and to Pin D within the RT. The voice signals are finally applied to the A8000 assembly speech amplifier for eventual frequency-modulation of the master oscillator’s rf output.

Reception

In position 1 of the RAD TRANS switch, SPEAKER audio signals from the A-RT are selected, while the C-RT’S SPEAKER audio signals are open-circuited at the switch segment. The reception path is as follows.

SPEAKER audio from the A5000 is applied to Pin F of RT Plug P401. From there, the received SPEAKER signals (MUTED AUDIO) are applied to Pin J at J22 in the mount; to Pin J of C-2299 J701 (or J702); to the RAD TRANS switch; the VOLUME control; and then to Pin B and Pin E of J703 and J704. Pin B or Pin E applies the audio to the user’s headphone, or to a speaker.

AUDIO ACCESSORY EXTENSION USING A SINGLE RT

When only one RT is used, it must be plugged into the C-2299 J701 jack. If the J702 jack is used, no dc power is applied to the A80 MIC AMPL, in which case there will not be sufficient microphone signal amplitude to drive the transmitter’s speech amplifier and, thus, the user’s voice will not transmit.

1-25. RADIO RELAY OPERATION (RETRANSMISSION) USING CONTROL BOX C-2299.

Control Box C-2299 provides radio relay operations for the AN/VRC-45 and AN/VRC-49 configurations. During radio relay operation, the user can hear the messages being relayed, but he cannot otherwise control the audio accessories.

The A- and C-RT’S go into the relay operation mode when the C-2299 RETRANS switch is in the ON position and the RT’s are both set to NEW or OLD SQUELCH. At this time, both RT’s receive incoming signals. One RT breaks squelch before the other and becomes the relay receiver, making the other RT the relay transmitter. Assuming the A-RT breaks squelch first, the relay process is as follows.
1-25. RADIO RELAY OPERATION (RETRANSMISSION) USING CONTROL BOX C-2299. (CONT)

RETRANSMIT C-RT KEYING

The retransmit signal is sent from the A-RT (receiver) to the C-RT (transmitter) as a keying signal to put the C-RT into the transmit mode. The retransmit signal is a ground provided by the A-RT when it breaks squelch.

When the received FM signals cause the A-RT to break squelch, its K5002 SQUELCH relay energizes, connecting Contacts 2 and 5. Since Contact 2 is at ground potential, ground is applied through Contacts 2 and 4 of RETRANSMIT Relay K405 to Pin T of P401, pin T of J24, Pin T of J22, and then through Pin T of J701 in the C-2299 control box. From there the ground is applied to a segment of the RETRANS switch (ON), from which it is applied to Pin J of J702. Ground is then applied through CX-4723 to Pin S of J22 in the C-RT's mount; Pin H of J24 of P401; and then to Keying Relay K401, thus keying the transmitter.

With the C-RT keyed, it can transmit messages received by the A-RT. The modulation path from the A-RT to the C-RT is as follows.

RETRANSMIT C-RT MODULATION

In the A-RT (receiving), three audio outputs are available at the A5000 assembly. One of them, FIXED LEVEL AUDIO (monitor audio), is applied to Pin K of P401 to Pin K of J24, to Pin K of J22; through CX-4723 to Pin K of J701 at the C-2299; and to a segment of the RETRANS switch. From the RETRANS switch, the audio signals are applied to Pin U of J702; through CX-4723; Pin U of J22 on the mount, to Pin N of J24; Pin N of C-RT P401; and then to the A8000 assembly speech amplifier for frequency-modulation of the master oscillator's rf output.

If the C-RT receives a signal, the A-RT transmits it.

RETRANSMIT A-RT KEYING PATH

The signal received by the C-RT establishes an A-RT keying ground at its P401 as previously described for the Re transmit C-RT Keying paragraph above. C-RT'S P401 Pin T mates with mount J24 Pin T which applies the ground to Pin T of J22, and then through CX-4723 to Pin T of J702 in the C-2299 control box. From there the ground is applied to a segment of the RETRANS switch (ON), from which it is applied to Pin S of J701. Ground is then applied through CX-4723 to Pin S of J22 in the A-RT's mount; to Pin H of J24 to Pin H of P401; and then to keying relay K401, thus keying the transmitter.

With the A-RT keyed, it can transmit messages received by the C-RT. The modulation path from the C-RT to the A-RT is as follows.

RETRANSMIT A-RT MODULATION

In the C-RT (receiving), three audio outputs are available at the A5000 assembly. One of them, FIXED LEVEL AUDIO (monitor audio), is applied to Pin K of P401, to Pin K of J24, to Pin K of J22; through CX-4723 to Pin K of J702 at the C-2299; and to a segment of the RETRANS switch. From the RETRANS switch, the audio signals are applied to Pin U of J701; through CX-4723 to Pin U of J22 on the mount, to Pin N of J24; Pin N of A-RT P401; and then to A8000 assembly speech amplifier for frequency modulation of the master oscillator's rf output.
1-25. RADIO RELAY OPERATION (RETRANSMISSION) USING CONTROL BOX C-2299. (CONT)

RETRANSMIT RT MONITORING

If the A-RT is the receiving RT during relay operation, the RAD TRANS switch on the C-2299 must be in position 1 for the user to hear the relayed message. Of course, position 2 must be selected if the C-RT is the receiving unit. Assuming the A-RT is the receiving unit, the audio path to the user’s accessory is as follows.

SPEAKER audio from the A-RT’s A5000 assembly is applied to Pin F of RT P401; Pin F of J24 to Pin J of J22 in the mount; through CX-4723 to Pin J of J701; and to a segment of the RAD TRANS switch. From the RAD TRANS switch, the audio signals are applied through the VOLUME control to Pin B and Pin E of J703 and J704. These signals are then used to drive an audio accessory enabling the user to monitor the received messages.

If the C-RT is the receiving RT during relay operation, the SPEAKER audio from the C-RT’S A5000 assembly is applied to Pin F of P401; Pin F of J24 to Pin J of J22 in the mount; through CX-4723 to Pin J of J702; and to a segment of the RAD TRANS switch. From the RAD TRANS switch, the audio signals are applied through the VOLUME control to Pin B and Pin E of J703 and J704. These signals are then used to drive an audio accessory enabling the user to monitor the received messages.

1-26. RT-246(*)/VRC SERVOSYSTEM.

BASIC SERVO OPERATION

[Diagram of servo system]
1-26. RT-246(*)/VRC SERVOSYSTEM. (CONT)

The purpose of a basic servosystem is the automatic tuning of a radio to a preset frequency when a channel pushbutton is pressed. Automatic tuning is done by the action of a servomotor on the radio’s gear train.

A manually adjusted frequency selector sets the particular frequency to which a pushbutton is preset. The frequency selector is part of the error signal network, which also includes a potentiometer whose moveable wiper is connected to the servomotor through a mechanical linkage.

AC power is applied to the error signal network, which outputs an error signal when the manually adjusted frequency selector and the potentiometer are not electrically balanced. Electrical imbalance exists whenever a channel pushbutton is pressed and the radio is not tuned to the preset frequency. In other words, the potentiometer’s moveable wiper is in the wrong position.

This imbalance causes the error signal to be applied to the servoamplifier, which amplifies it, and outputs a control phase () signal to the servomotor. The action of the control phase () signal and the reference phase () signal from ac power source causes the servomotor to turn.

As the motor turns, it moves the gear train, tuning the radio to the proper frequency. The motor also moves the potentiometer’s moveable wiper until the error signal network electrically balances. At this point, the error signal and control phase () signals disappear, and the servomotor stops turning, causing the gear train to stop moving at the preselected frequency setting.

DETAILED OPERATION OF RT-246(*)/VRC SERVOSYSTEM

(Refer to FO-4)

Power Flow To Pushbutton Assembly

Terminals J and B on Plug P401 receive 22 to 30 vdc input. This voltage is applied to Power Relay K404 at Terminal 7 and then to ground through the POWER switch when it is in LOW or HIGH position.

With K404 Terminal 2 at ground potential, the relay energizes, causing Terminals 4 and 6 to contact. DC power is now applied from Terminal B of P401 to Terminals 4 and 6 of K404; through the one-amp circuit breaker to the POWER switch. Power is then applied to the BAND switch when the POWER switch is in LOW or HIGH position. When the BAND switch is in AUTO, it applies power to the pushbutton assembly.

NULL Switch Operation

The NULL switch turns the servosystem on by supplying 25.5 vdc to the 115-vac power supply and to the servoamplifier. For the NULL switch to supply 25.5 vdc, it must receive enable signals.

When pushbutton 1 is pressed, for example, power is applied to a time delay device which, for a limited period of time, applies an enable voltage to the NULL switch, temporarily turning it on. The NULL switch would turn off shortly after enable 1 disappeared, if it did not receive another enable signal. The source of the additional enable signal will be discussed later in this paragraph.
1-26. RT-246(*)/VRC SERVOSYSTEM. (CONT)

Error Signal Generation

For the servomotor to operate and automatically tune the radio component, an error signal must be produced. The RT-246(*)/VRC’s servosystem error signal is produced by the error signal network as described under Basic Servo Operation.

Part of the ac error signal is applied back to the NULL switch through a stepdown transformer. It is then rectified and applied to the NULL switch as dc enable 2. As long as the servosystem is in the process of automatically tuning, an error signal is produced and with it, an enable 2 signal. When the system is properly tuned, the error signal network balances; the error signal disappears along with enable 2, and the NULL switch shuts off the system by turning off the 25.5-vdc power to the servoamplifier and 115-vac, 400-Hz power supply.

Operation of Servoamplifier and Servomotor

The servoamplifier and servomotor function as described under Basic Servo Operation. As indicated in FO-X, the servoamplifier is turned on only when it receives 25.5 vdc from the NULL switch.

TUNE Button

The TUNE button independently turns on the NULL switch when the button is pressed to allow manual presetting.

1-27. RT-246(*)/VRC POWER CONTROL AND CHANNEL SELECTION FROM PRIMARY AND TANDEM C-2742/VRC.

Control Box C-2742 can be used to control the following functions of the RT-246 from a remote location:

1. Main 22-30 vdc power ON/OFF switching.
2. Selection of high or low rf power transmission.
3. Selection of any one of ten preset channels established by the RT’s channel pushbuttons.

An additional C-2742 can be connected to a primary C-2742 for tandem operation, thereby permitting the tandem C-2742 to perform the same functions as the primary unit except for power ON/OFF switching, from a second remote location.

MAIN POWER ON/OFF SWITCHING

(Refer to FO-4.) With the primary C-2742 PWR Switch S72 in the OFF position, Contact 3 is opened (ungrounded). This opens the ground path for the RT’s K404 power relay, turning the RT off.

Contact 3 is grounded in both the HI and LO positions of the PWR switch. In either case, the RT’s power relay ground circuit is as follows.

DC power is applied to Pin J at Plug P401 of the RT; Contacts 7 and 2 of Power Relay K404; through a segment of the RT’s POWER switch in the REMOTE position; and to Pin N of the RT’s REMOTE Jack J306. From Pin N, power is applied to Pin N of J71 at the C-2742, and from J71 to Contact 3 at the PWR switch. When Contact 3 is grounded, the RT turns on.
SELECTION OF HIGH OR LOW RF POWER

For the RT to operate in the low-power mode, its LO-HI Power Relay K406 must be deenergized; (i.e., it must have no path to ground). When the C-2742 PWR switch is set to LO, Contact 4 of the PWR switch is left open, keeping K406 deenergized.

In the high-power mode, the K406 ground path is as follows. DC power is applied to K406 at Contact 7; through the relay coil to Contact 3; to a segment of the RT POWER switch; and to Pin P at the RT REMOTE Jack J306. From the REMOTE jack, power is applied to Pin Pat C-2742 J71; to Contact 5 of K71.

The C-2742 takes control of the RT when the S73 SW (switch) is toggled, also causing K71 Contact 5 to mate with Contact 3, Power from the RT LO-HI Power Relay K406 is applied to Contact 3 of K71, to Contact 4 of the PWR switch, and to ground through to switch segment. This energizes RT Relay K406, causing the RT to operate in the high-power mode.

REMOTE SELECTION OF PRESET CHANNELS

The C-2742 CHAN SEL switch applies dc power to the RT channel pushbutton assembly to select individual channels. The CHAN SEL switch receives dc power from the K71 relay. Operation of the K71 relay is as follows.

K71 Relay

DC power from Pin B of RT Plug P401 is applied to the one-amp circuit breaker through Contacts 4 and 6 of the Power Relay K404. From the breaker, power is applied to a segment of the POWER switch; and then to Pin M of the RT’s REMOTE jack. From the remote jack, power is applied to Pin M at J71 in the C-2742, and then to Coil Contacts 7 and 10 at Relay K71. The relay is energized by the action of Momentary Contact Switch (SW) S73.

Momentary Switch (SW) S73

When Momentary Switch S73 is closed, it provides a ground path for Contact 10 of Relay K71. With Contact 10 grounded, 22-30 vdc through the relay coil to ground energizes the relay. When this happens, K71 relay Contacts 6 and 8 mate, thereby supplying dc power to the CONTROL lamp and the S71 CHAN SEL switch.

Control Lamp

The CONTROL lamp illuminates when the K71 relay coil 7-10 is energized, indicating to the user that power is available at the CHAN SEL switch, enabling the switch to select one of the RT’s preset channels.

Chan Sel Switch

The CHAN SEL switch applies dc power to Pin B, C, D, E, F, H, J, K, or L at C-2742’s J71 and to identical pins at RT REMOTE Jack J306. Only one circuit at a time is energized by the CHAN SEL switch; each pin corresponds to an individual channel.
1-27. RT-246(*)/VRC POWER CONTROL AND CHANNEL SELECTION FROM PRIMARY AND TANDEM C-2742/VRC. (CONT)

The dc power applied to the pins at the REMOTE jack is then applied to the selected channel pushbutton circuit in the RT servosystem, turning on the system to automatically tune the RT to the preset frequency.

TANDEM OPERATION

NOTE

The primary C-2742 PWR switch must be at LO or HI for the tandem C-2742 to operate.

When the momentary switch is closed at the tandem C-2742, it takes control of the RT using circuits identical to those described in connection with the primary unit.

However, when the tandem unit takes control, the primary C-2742 can no longer select channels using its CHAN SEL switch, until its momentary switch is once again closed. This happens because the primary C-2742's K71 relay energizes coil 2-9 in the reverse direction when the tandem unit's S73 switch is closed. The dc path is as follows.

DC power available at Pin M of J71 at the primary C-2742 is applied through Contacts 2 to 9 of the K71 relay coil. From Contact 9, power is applied to Pin U of J72; to Pin U of J71 at the tandem C-2742; and then to ground through the tandem unit's closed Momentary Switch S73.

The ground at Switch S73 energizes K71 relay coil 7-10 1 to the tandem C-2742 and K71 relay coil 2-9 in the primary C-2742, causing it to move in a direction opposite to that which it moved when the primary unit's momentary switch was closed. This movement disconnects the primary C-2742's K71 Contacts 6 and 8; thus removing dc power from the CHAN SEL switch. Therefore, the primary C-2742 cannot make channel selections while the tandem unit is in control. Furthermore, since Contacts 3 and 5 of the K71 relay also become disconnected, the primary PWR switch cannot control the RT power level. The tandem unit then assumes channel selection and power level control as described for the primary C-2742.

1-28. FREQUENCY INTERFERENCE AND FREQUENCY SELECTION,

Frequency interference problems may occur when several fm transmitters, operated on different frequencies, are situated in the same locale. The problem can occur between AN/VRC-12 series radios and between these radios and other low-power fm radios such as AN/PRC-25 and AN/PRC-77 or vehicular versions such as AN/VRC-53, AN/VRC-64, AN/GRC-125 and AN/GRC-160.

METHODS TO REDUCE OR ELIMINATE FREQUENCY INTERFERENCE

Use low power transmission if possible.

When frequency “A” interferes with frequency “B” but frequency “B” does not interfere with frequency “A”, consider using frequency “A” on a secure voice net.

Internal interference may occur in the squelch circuits of the receiver-transmitter and the R-442(*)/VRC when no signal is being received. The following frequencies should not be used for communications: 33.90 MHz, 45.20 MHz, 56.50 MHz, 67.80 MHz.
1-28. FREQUENCY INTERFERENCE AND FREQUENCY SELECTION. (CONT)

Avoid frequencies which are separated by exactly 5.75 MHz or 23.00 MHz.

Do not use second order harmonic frequencies. For example, 30.00 MHz may interfere with 60.00 MHz, 32.65 MHz may interfere with 65.30 MHz and 35.00 MHz may interfere with 70.00 MHz etc.

When operating in the retransmission configuration use the interfering frequencies charts (fig. FO-5 and FO-6) as a guide.

Maintain at least 10 MHz separation between channels in retransmission configuration.

Observe minimum frequency versus distance restrictions given below.

<table>
<thead>
<tr>
<th>Minimum frequency separation required</th>
<th>Minimum antenna distance separation (whip antenna or RC-292)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Between AN/VRC-12 series radios on HIGH power</td>
</tr>
<tr>
<td>10 MHz</td>
<td>5 feet(^a)</td>
</tr>
<tr>
<td>7 MHz</td>
<td>60 feet</td>
</tr>
<tr>
<td>4 MHz</td>
<td>150 feet</td>
</tr>
<tr>
<td>2 MHz</td>
<td>400 feet</td>
</tr>
<tr>
<td>1 MHz</td>
<td>800 feet</td>
</tr>
<tr>
<td></td>
<td>Between AN/VRC-12 series radios on LOW power or between AN/PRC-25 and AN/PRC-77a</td>
</tr>
<tr>
<td></td>
<td>5 feet(^a)</td>
</tr>
<tr>
<td></td>
<td>10 feet</td>
</tr>
<tr>
<td></td>
<td>50 feet</td>
</tr>
<tr>
<td></td>
<td>200 feet</td>
</tr>
<tr>
<td></td>
<td>350 feet</td>
</tr>
</tbody>
</table>

\(^a\) This includes the vehicular versions of these radios.

\(^b\) This distance is representative of those vehicles in which retransmission radio sets are used (AN/VRC-49 and AN/VRC-45).
CHAPTER 2

INSTALLATION

OVERVIEW

This chapter contains Information concerning tools, materials and procedures needed for Installation of components of the AN/VRC-12 series radio sets and the cabling of these components. This chapter also provides Information on unpacking and checking of equipment upon receipt and procedures to verify correct Installation.

Section I INSTALLATION TOOLS AND MATERIALS

2-1. COMMON TOOLS AND EQUIPMENT.

Authorized common tools and equipment are listed in either your unit’s Modified Table of Organization and Equipment (MTOE) or Table of Distribution and Allowances (TDA), whichever is applicable to your unit.

2.2. SPECIAL INSTALLATION TOOLS AND MATERIALS.

Special tools for installation are listed in appendix B. Expendable materials are listed in appendix C.

Most tools required for all installation procedures are contained in Tool Kit, Electronic Equipment TK-101 /G. When specific tools not contained in TK-101 are needed, they will be listed at the beginning of the specific installation procedure.

NOTE

Special tools needed and not contained in TK-101 (e.g., an electric drill, drill bits, metal punches, etc) normally can be obtained from your motor maintenance section.

if additional parts or hardware are needed for a particular installation, refer to the appropriate TM 11-2300 series installation manual. This technical manual lists the National Stock Numbers (NSN) and/or part numbers for all the parts required for the particular vehicle’s installation.
Section II SERVICE UPON RECEIPT

2-3. UNPACKING AND INSPECTING UNPACKED RADIO SET ITEMS.

TOOLS: Tool Kit TK-101/G

CAUTION

The radio set items of equipment are compact and heavy (over 60 lb). Be very careful when handling them. Serious personnel injury could occur. Observe proper handling procedures [paragraph 2-11].

NOTE

If unit is packed in a wooden crate, remove wooden crate.

When cutting cardboard with knife, do not allow knife to enter carton. Save all packing material for use in repacking radio set items.

1. Using knife, cut tape (1) on box (2).
2. Open flaps (3) and fold back.
3. Remove manuals (4).
4. Remove fiberboard pads (5).
5. Lift out radio set component (6) (RT illustrated).

Inspect the radio set for damage sustained during shipment. If the equipment has been damaged, report the damage on SF 364.

Check the equipment against the packing slip to see if the shipment is complete. Report all discrepancies in accordance with instructions of [paragraph 1-3].

Check whether applicable MWO’S have been applied.
Section III INSTALLATION PROCEDURES

Subject	**Para**	**Page**
General Information | 2-4 | 2-3
MT-1029/VRC without Vinson J-Box C-3513 | 2-5 | 2-9
MT-1898/VRC without Vinson J-Box C-3514 | 2-6 | 2-10
MT-1029/VRC with Vinson J-Box C-3513 and inspecting Link Position in MT-1029/VRC and MT-1898/VRC | 2-7 | 2-11
RT Antennas AS-1729 and AT-912 | 2-8 | 2-12
Auxiliary Receiver Antenna | 2-10 | 2-30
Receiver-Transmitters RT-524 (*)/VRC and RT-246 (*)/VRC | 2-11 | 2-34
Radio Set Control C-2742/VRC | 2-12 | 2-37
Radio Set Control C-2299/VRC | 2-13 | 2-38
Aux Receiver R-442 (*)/VRC | 2-14 | 2-40
Determining Position of Power Control Link of a Radio Mount | 2-15 | 2-42
Determining Position of X-MODE Switch of an RT | 2-16 | 2-42
Determining Position of X-MODE Switch of R-442 | 2-17 | 2-44

2-4. GENERAL INFORMATION.

Procedures in this section describe the mounting of the AN/VRC-12 radio sets in any wheeled vehicle. The installation of any of the AN/VRC-12 series radio sets requires a radio set (basic unit) and an installation kit.

The radio set consists of the required receiver-transmitter(s) (RT-524/VRC or RT-246/VRC), auxiliary receiver(s) (R-442/VRC) and an RT antenna (AT-912/VRC or AS-1729/VRC).

The installation kit consists of mountings for the receiver-transmitter(s) (MT-1029/VRC) and the auxiliary receiver(s) (MT-1898/VRC). It also consists of all required cables, brackets (installation hardware), control boxes (C-2299/VRC and C-2742/VRC), audio accessories and an aux receiver antenna.

NOTE

When stop-gap installations are required for maneuvers, special projects, field tests, and emergency situations, or when special installations are needed and not listed in SB-11-132, Vehicular Radio Sets and Authorized Installations, requests should be submitted to Commander, US Army Communications-Electronics Command and Fort Monmouth, ATTN: AMSEL-ME-MP, Fort Monmouth, New Jersey 07703-5007.

For a complete listing of the radio set and the installation kit items of equipment for a particular wheeled vehicle, refer to TM 11-5820-401-10-1-HR.

For installation instructions for a specific AN/VRC-12 series radio set in a particular wheeled vehicle, refer to a corresponding 2300 series TM.
2-4. GENERAL INFORMATION. (CONT)

COMMONLY USED WASHERS

Each procedure requires the use of bolts, star washers and nuts for installation of components and grounding straps.

![Double Star Washer](image1)
![Internal Star Washer](image2)
![External Star Washer](image3)

Star washers are used to make sure the mounting bolts or screws and nuts on the radio set Items do not vibrate loose. The double star washer is used in all cases where a grounding strap is present (or larger bolts or screws with a threaded shaft of 1/4 Inch and larger); this type of star washer will bite through the vehicle paint to Insure good grounding,

External and Internal star washers are used with small screws, but they may not bite through the paint.

NOTE

To Insure good grounding, scrape paint off mating surfaces when small star washers are used or thick paint is present.
2-4. GENERAL INFORMATION. (CONT)

Installation procedures also provide for the required cabling for the AN/VRC-12 series radios. The configuration of the AN/VRC-12 series radio set to be installed depends on the vehicle and its mission. Refer to TM 5820-401-20-1-HR for the radio set components and installation kit for each type of vehicle.

IDENTIFYING AND TAGGING CABLE CONNECTIONS

To complete the installation of a radio set in a wheeled vehicle, various cables are used to connect the components of the set together.

The plug at the ends of a cable may be a right-angle (elbow) type or a straight type, depending on the cable routing requirements. For some cables, an elbow adaptor is available to change a straight connection to a right-angle connection.

In the future, to identify the cable plugs with their equipment jacks, write the numbers of the jack (J701, J702, J71, J72 etc) on a tag or decal and attach it to the cable plug. Do this when the plug is attached to the proper equipment jack.

NOTE

A printed set of decals is available for use in identifying cable plugs.
2.4. GENERAL INFORMATION. (CONT)

CABLE ROUTING AND PLUG ORIENTATION

Orientation of Cables

WARNING

Incorrect cable routing may cause the cable to extend into the crew compartment, resulting in injury to crewmembers.

Connect cable as required by installation procedures in this section. If cables do not lie as shown in the installation illustration, or interfere with crew movement, reorient cables as follows.

WARNING

To safeguard against electrical shock and possible damage to equipment, remove or tape all personal exposed metal objects (e.g., watches, rings and medallions).

CAUTION

Cable plugs must be at the proper angle when mated to the corresponding jack, or the cable will obstruct the other cable connections to that component. It may also cause equipment damage.

NOTE

Installation instructions for a particular vehicle include cable routing diagrams. Cable strapping directions must be followed to avert hazardous obstructions.

For proper routing of cables and Placement of components, see chapter 1, section II, or an appropriate 2300 series TM.
2-4. GENERAL INFORMATION. (CONT)

Plug Orientation

Plug orientation refers to the cable plug’s position when connected to its corresponding jack. The plug body’s angle depends upon the alignment of a cable plug keyway with its jack key.

Changing Plug Orientation

PRELIMINARY PROCEDURE: Unplug each end of cable from its jack.

1. Using adjustable wrench, unscrew gland nut (1). Slide gland nut down cable (2).
2. Using small screwdriver, carefully remove packing (3). Slide packing down cable (2).
3. Using appropriate spanner wrench, remove locking ring (5) on pin side of plug.
4. Gently pull out pinblock assembly (4) until it can be rotated to desired-position.

NOTE

In either direction, do not rotate pinblock assembly more than one-quarter turn (three notch positions) from center.
2-4. GENERAL INFORMATION. (CONT)

Changing Plug Orientation (Cont)

5. Replace pin-block assembly (4) and locking ring (5). Tighten with appropriate spanner wrench.
6. Replace packing (3) and gland nut (1). Using adjustable wrench, tighten gland nut (1).

Connecting CABLE PLUGS TO ASSOCIATED JACKS

PRELIMINARY PROCEDURE:

Inspect pins of plug and associated jack for damage, (e.g., bent or missing pins). If necessary, using pliers, straighten.

![Diagram of cable plug connection](image)

1. Check that locking rings (1) are tight. If necessary, using appropriate spanner wrench, tighten.
2. Aline plug keyway (2) with associated jack’s key (3) and then gently press plug in until it initially seats (drops in).
3. Lift plug wingnut (4) and turn clockwise until plug is fully seated and tightly secured to its jack (fingertighten only).
4. Return plug’s wingnut (4) to its stowed position,

CAUTION

Do not attempt to reorient cables by adjusting equipment jacks. Damage to equipment could occur.
2-5. MT-1029/VRC WITHOUT VINSON J-BOX C-3513.

WARNING

Disconnect Power Cable CX-4720 from vehicle’s batteries before removing a mount’s J-box cover. Extreme electrical hazards exist within the J-box that could cause death.

PRELIMINARY PROCEDURE: Remove RT (if present) from mount tray. Remove top tray from its base. (See paragraph 3-19) Turn tray over to see cable plug. The locking screws should be closest to you.

INSTALLATION

1. Lineup plug keyway with jack key.
2. Carefully turn plug until it drops into jack. If plug orientation is not correct, see paragraph 2-4 for detailed procedure.
3. Lift and turn wingnut clockwise until plug is locked on jack. Fingertighten only.

CAUTION

Only change the orientation of the cable plug. Never change the jack orientation. Damage to equipment could occur.

4. Replace tray. (See paragraph 3-19).
2-5. MT-102/VRC WITHOUT VINSON J-BOX C-3513. (CONT)

<table>
<thead>
<tr>
<th>CABLE</th>
<th>ASSEMBLY</th>
<th>JACK</th>
<th>CABLE PLUG</th>
<th>ASSEMBLY</th>
<th>JACK</th>
<th>CABLE PLUG</th>
</tr>
</thead>
<tbody>
<tr>
<td>CX-4720/VRC</td>
<td>A-RT Mount MT-1029</td>
<td>J21</td>
<td>P2</td>
<td>Vehicle DC Power (Battery pack) (All configurations)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CX-4721/VRC</td>
<td>MT-1029</td>
<td>J23</td>
<td>P1</td>
<td>B-Receiver Mount MT-1898 (AN/VRC -12,-44,-47,-48)</td>
<td>J11</td>
<td>P2</td>
</tr>
<tr>
<td>CX-4721/VRC</td>
<td>J23</td>
<td>P1</td>
<td>C-RT Mount MT-1029 (AN/VRC -45,-49)</td>
<td>J21</td>
<td>P2</td>
<td></td>
</tr>
<tr>
<td>CX-4723/VRC</td>
<td>A-RT Mount MT-1029</td>
<td>J22</td>
<td>P1</td>
<td>C-2299/VRC (All configurations)</td>
<td>J701</td>
<td></td>
</tr>
<tr>
<td>CX-4721/VRC</td>
<td>C-RT Mount MT-1029</td>
<td>J22</td>
<td>P1</td>
<td>C-2299/VRC (AN/VRC -45,-49)</td>
<td>J702</td>
<td></td>
</tr>
</tbody>
</table>

2-6. MT-1898/VRC WITHOUT VINSON J-BOX C-3514.

WARNING

Disconnect Power Cable CX-4720 from vehicle’s batteries before removing a mount’s J-box cover. Extreme electrical hazards exist within the J-box that could cause death.

PRELIMINARY PROCEDURE: Remove R-442/VRC from mount tray.
- Remove top tray from its base. (See paragraph 3-19)
- Turn tray over to see cable plug. The thumbscrew should be closest to you.
2-6. MT-1898/VRC WITHOUT VINSON J-BOX C-3514. (CONT)

INSTALLATION

1. Lineup plug keyway with jack key.
2. Carefully turn plug until it drops into jack. If plug orientation is not correct, see paragraph 2-4 for detailed procedure.
3. Lift and tighten wingnut until plug is locked on jack. Fingertighten only.
4. Replace tray. (See paragraph 3-19)

<table>
<thead>
<tr>
<th>FROM</th>
<th>TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>CABLE ASSEMBLY</td>
<td>JACK</td>
</tr>
<tr>
<td>CX-4721/VRC</td>
<td>B-Receiver Mount MT-1898</td>
</tr>
</tbody>
</table>

WARNING

Disconnect Power Cable CX-4720 from vehicle’s batteries before removing a mount’s J-box cover. Extreme electrical hazards exist within the J-box that could cause death.
2-7. MT-1029/VRC WITH VINSON J-BOX C-3513 AND MT-1898/VRC WITH VINSON J-BOX C-3514. (CONT)

The Vinson J-boxes are installed between the top tray and the base assembly of the mountings. Install J-box C-3513 in the MT-1029, install the J-box C-3514 in the MT-1898. Refer to TM 11-5820-312-12 for nomenclature of kits, installation instructions, repair parts, and some operator procedures.

CABLE CONNECTIONS: See paragraph 3-22.

2-8. INSPECTING LINK POSITION IN MT-1029/VRC AND MT-1898/VRC.

WARNING

Disconnect Power Cable CX-4720 from vehicle’s batteries before removing a mount’s J-box cover. Extreme electrical hazards exist within the J-box that could cause death.

Inspecting the link position is usually done after replacing the MT-1029/VRC or the MT-1898/VRC in a vehicle before their radio components are installed.

When installing the MT-1029/VRC and MT-1898/VRC radio mounts in wheeled vehicles, the POWER LINK within the A-RT mount junction box is normally set for direct dc power control and the MT-1898 mount junction box is set for remote dc power. When an A-RT mount is set for REMOTE, the A-RT will not turn on. The C-RT mount (or the B- or C-receiver mount) is usually set to REMOTE. When other radio components are set for REMOTE dc input power control, those radio components cannot be turned on until the A-RT is turned on.

NOTE

The A-RT mount junction box should have the link on the center pivotal screw (E23) and (E24) (DIRECT) position. The C-RT mount junction box link is usually set on the pivotal screw (E23) and (E22) (REMOTE) position. The link inside the MT-1898 junction box should be to (E12) (REMOTE) position.
2-8. INSPECTION LINK POSITION IN MT-1029/VRC AND MT-1898/VRC. (CONT)

INITIAL PROCEDURE

1. Remove junction box cover of MT-1029 or MT-1898.
 a. Using screwdriver, loosen six captive screws.
 b. Using screwdriver, pry off cover.

 CAUTION

 Do not damage gasket between J-box and its cover.

2. Look inside J-box. See if link is in correct position.

TO CHANGE LINK POSITION (IF NEEDED):

1. Using screwdriver, loosen terminal screws E22 (E12), E24 (E14) and pivotal screw E23 (E13). (Do not remove.)
2. Swing link so it is between pivotal screw E23 (E13) and E22 (E12) (DIRECT), or E24 (E14) (REMOTE).
3. Using screwdriver, tighten screws E22 (E12), E23 (E13) and E24 (E14).

 CAUTION

 For older models, insure fuse lugs are lined up with terminal board holes while replacing cover.

GENERAL

This paragraph provides procedures for the installation of the RT antenna systems AT-912 and AS-1729. Each antenna will have its own procedure. The procedure for installing the antenna elements will be the same.

TOOLS: Tool Kit, Electronic Equipment TK-101/G

INSPECTING TIP CONTACT OF MX-6707

1. Pull off dust cover (1) from threaded portion (2) of spring assembly (3),
2. See that tip contact (4) is about 1/8 inch above threaded portion (2).

NOTE

If tip contact is 1/8 inch above the threaded portion, go to installation of matching unit (page 2-19.) If the tip contact is not 1/8 inch above the threaded portion, do steps 1 through 9 below.

CHANGING THE LENGTH OF MX-6707 TIP CONTACT

1. Using 7/16-inch wrench, loosen and remove six bolts (7) and lockwashers (8).
2. Remove spring assembly (3) and unplug rf cable (10) from matching unit. (Do not lose O-ring.)
3. Using 3/32-inch hex wrench, loosen two setscrews (5) and a third hex (cap) screw (6).

CAUTION

When doing step 4, do not cut rf cable (10) with screwdriver. Hold rf cable (10) to one side of spring assembly (3).

4. Insert flat-tip screwdriver into spring assembly (3) and push gently on bottom of tip contact (4) until tip extends 1/8 inch above threaded portion (2) of the spring assembly (3).
2-9. RT ANTENNAS AS-1729 AND AT-912. (CONT)

NOTE

If tip contact is worn and does not extend above the threaded portion, reassemble element and refer matching unit to higher level of maintenance.

5. Using hex wrench, tighten two setscrews (5) and third hex (cap) screw (6).
6. Coat O-ring (11) with silicone compound (item 1, appendix C).
8. Aline mounting holes on spring assembly flange (12) and matching unit (9).
9. Using torque wrench with 7/16-inch socket, install six bolts (7) and star washers (8). Tighten to 40 in. lb torque.

INSPECTING TIP CONTACT OF MX-2799 (AB-719)

1. Pull off dust cover (1) from threaded portion (2) of spring assembly (3).
2. See that tip contact (4) is 1/8 inch above threaded portion (2).

NOTE

If tip contact is 1/8 inch above the threaded portion, go to installation of matching unit. If tip contact is not 1/8 inch above the threaded portion, see page 2-16.
2-9. RT ANTENNAS AS-1729 AND AT-912. (CONT)

CHANGING LENGTH OF MX-2799 (AB-719) TIP CONTACT

1. Unplug rf cable plug (1) from MX-2799 jack (2).
2. Using 1/2-inch wrench, loosen two side bolt nuts (3) and two top bolts (4).
3. Remove spring assembly (5) from its C-clamp (6).
4. Using 3/32-inch hex wrench, loosen two setscrews (7) and capscrew (8).

CAUTION

When doing step 5 below, do not cut rf cable (1) with screwdriver. Hold rf cable (1) to one side.

5. Push tip contact (9) up gently until tip contact extends 1/8 inch above top of threaded portion (10).
6. Using 3/32-inch hex wrench, tighten two setscrews (7) and a capscrew (8).
7. Insert spring assembly (5) into its C-clamp (6) and connect rf cable plug (1) to MX-2799 rf jack (2). (Position spring assembly (5) so that connected rf cable (1) is not crimped.)
8. Tighten two side bolt nuts (3) and two top bolts (4).

INSTALLATION OF VEHICLE MOUNTING BRACKET

TOOLS: Tool Kit, Electronic Equipment TK-101/G
PRELIMINARY PROCEDURE: Have motor pool drill holes into vehicle.
1. Insert reinforcing plate (1) and two nut plates (2) inside wall of vehicle (3) and align holes.
2. Place mounting bracket (4) against vehicle wall (3). Insert four hex bolts (5).
3. Using 7/16-inch box-end wrench, tighten hex bolts (5).

INSTALLATION OF ANTENNA MOUNTING BRACKET

TOOLS: Tool Kit, Electronic Equipment TK-101/G
PRELIMINARY PROCEDURE: Install vehicle mounting bracket.

1. Place antenna mounting bracket (1) against vehicle mounting bracket (2) and align holes.
2. Insert six bolts (3) and star washers (4) through mounting bracket (1) and vehicle mounting bracket (2).
3. Place nuts (5) and star washers (4) on tip of bolts (3).
INSTALLATION OF MATCHING UNIT MX-6707

CAUTION

A steel reinforcing ring must be installed on matching units. The ring protects the Lexan plastic flange and keeps water from the gasket.

NOTE

If the matching unit already has a steel reinforcing ring attached to the flange, go to the installation procedures.

INSTALLATION OF MATCHING UNIT MX-6707

CAUTION

WHEN INSTALLING THE MATCHING UNIT IN BRACKET, ALWAYS POSITION THE DRAIN SCREW OPPOSITE THE VEHICLE.
To install MX-6707:
1. Place gasket (1) (part of hardware kit) around matching unit (2).
2. Place matching unit (2) into mounting bracket (3).
3. Place steel reinforcing ring (4) around matching unit (2).
4. Insert four bolts (5) through matching unit (2).
5. Place four lockwashers (6) and nut (7) on four bolts (5) from bottom side of matching unit (2).

CAUTION

Overtightening of hardware may damage matching unit (2).

6. Using a torque wrench with a 9/16-inch socket wrench, tighten bolts (5) to 100 in. lb.
2-9. RT ANTENNAS AS-1729 AND AT-912. (CONT)

INSTALLATION OF GROUND STRAP FOR MATCHING UNIT MX-6707

WARNING

To prevent possible electrical shock, make certain that the ground strap is correctly grounded to the vehicle body.

1. Position ground strap (1) so terminal lug with smaller hole (2) is toward matching unit’s threaded post (5).
2. Insert bolt (4) through star washer (3), lug (2), another star washer (3) and into threaded post (5). Using 7/16-inch wrench, tighten until snug.
3. Position other end of ground strap (1) so terminal lug with larger hole (6) is toward vehicle’s mounting bracket (9).
4. Insert bolt (8) through star washer (7), mounting bracket (9), star washer (7) lug (6) and another star washer (7) and into nut (10). Using 7/16-inch wrench, tighten until snug.
2-9. RT ANTENNAS AS-1729 AND AT-912. (CONT)

INSTALLATION OF CABLES

PRELIMINARY PROCEDURE: Install RT. See paragraph 2-11.

CAUTION

Before connecting cables to the matching unit, turn RT POWER switch to OFF. Connector pins may be damaged due to arcing if this precaution is not observed.

NOTE

Always connect the large cable (CX-4722/VRC) to the matching unit connector or J2 before connecting the small cable (CG-1773/U).

For MX-6707 (MX-2799):
1. Connect plug (1) of Control Cable CX-4722 (2) to Jack J2 (J551) (3) of matching unit (4).
2. Connect plug (5) of RF Cable CG-1773 (6) to Jack J1 (J552) (7) of matching unit (4).
2-9. RT ANTENNAS AS-1729 AND AT-912. (CONT)

INSTALLATION OF MX-2799 AND CABLE CONNECTIONS

Installation of Mounting Brackets

The MX-2799 can be mounted either vertically or horizontally. The procedure for vertical mounting is followed by the horizontal mounting.

TOOLS: Tool Kit Electronic Equipment TK-101/G
PRELIMINARY PROCEDURE: Have motor pool drill holes into vehicle.

1. Insert reinforcing plate (1) and two nut plates (2) inside wall of vehicle (3) and aline mounting holes.
2. Place mounting bracket (4) against vehicle wall (3).
3. Insert four hex bolts (5) and lockwashers (6) through bracket and into nut plates (2).
4. Using 7/16-inch box-end wrench, tighten hex bolts (5).

NOTE

The mounting bracket (4) can be mounted vertically or horizontally (for application with the AT-912).
2-9. RT ANTENNAS AS-1729 AND AT-912 (CONT)

Installation of Antenna Base AB-719 and Matching Unit MX-2799 (Vertical Mounting)

1. Place matching unit (1) against vehicle mounting bracket (2) and align holes.
2. Insert six hex bolts (3) and star washers (4) through holes and into matching unit (1).
3. Using 7/16-inch box-end wrench, tighten hex bolts (3).
4. Insert spring assembly (5) into painted top of C-clamp (6) until bottom of clamp (6) and bottom of spring assembly (5) are even.
5. Using wrench, tighten two nuts (7).
6. Connect BNC plug (8) to BNC jack (9).
7. Place clamp (6) on top of matching unit (1) and align holes.
8. Insert four hex bolts (10), lockwasher (11), and flat washers (12) through holes.
Installation of Antenna Base AB-719 and Matching Unit MX-2799 (Horizontal Mounting)

1. Place matching unit (1) against vehicle mounting bracket (2) and align holes.
2. Insert six hex bolts (3) and star washers (4) through holes and into matching unit (1).
3. Using 7/16-inch box-end wrench, tighten hex bolts (3).
4. Insert spring assembly (5) into painted top of clamp (6) until bottom of clamp (6) and bottom of spring assembly (5) are even.
5. Using 7/16-inch box-end wrench, tighten two nuts (7).
6. Connect BNC plug (8) to BNC jack (9).
7. Place clamp (6) on top of matching unit (1) and align holes.
8. Insert four hex bolts (10), lockwasher (11), and flat washers (12) through holes,
2-9. RT ANTENNAS AS-1729 AND AT-912. (CO NT)

CABLE CONNECTIONS FOR MX-2799

![Diagram of cable connections](image)

CAUTION

Before connecting cables to the matching units turn RT POWER switch OFF. Connector pins may be damaged due to arcing if this precaution is not observed.

Always connect the large cable (CX-4722) to the matching unit before connecting the small rf cable (CG-1773/U).

1. Connect Cable CX-4722 plug (1) to Jack J2 (2) on matching unit (3).
2. Connect Cable CG-1773/U plug (4) to Jack J1 (5) of matching unit (3).

INSPECTION OF LOWER ELEMENT HORSSHOE CONTACT

TOOLS: Tool Kit, Electronic Equipment TK-101/G

![Inspection diagram](image)

1. Check that horseshoe contact (1) is not damaged (e.g., flattened or broken).

NOTE

If horseshoe contact (1) is damaged, refer unit to higher level of maintenance.

2. Using screwdriver, tighten screws (2) if loose.
3. Using finger or screwdriver, push against button contact (3). Check spring action.

NOTE

If the button contact (3) does not spring back, refer unit to higher level of maintenance.
2-9. **RT ANTENNAS AS-1729 AND AT-912. (CONT)**

INSTALLATION OF ANTENNA TIP CAP ON AT-1095 (RT) AND MS-118 (AUX RECEIVER)

MATERIALS/PARTS: Pressure-sensitive tape (item 4, appendix C)
Insulation tape (item 3, appendix C)

PRELIMINARY PROCEDURE: Insure proper length of upper element:
- AT-1095/VRC: 64 1/2 inches (163.83 cm) long,
- MS-118A: 39 3/4 inches (100.33 cm) long.

CAUTION

The antenna tip cap assembly and its plastic slotted end have to be reinforced and secured by pressure-sensitive tape and insulator tape.

1. Wrap six or seven layers of 1/2-inch-wide pressure-sensitive tape (1) (item 4, appendix C) 2 inches from upper element (2) tip.
2. Place antenna tip cap (3) over tip of upper element (2). Push down until tip cap (3) (lower slotted part) rests in contact with tape (1).
2-9. RT ANTENNAS AS-1729 AND AT-912. (CONT)

3. Start taping at tip cap (3) slot. Wrap tape (1) across tip cap (3), conforming with shape of tip cap (3) so that tape (1) goes over cap tip and returns to slotted end. Cut tape (1). (Repeat step until all slots have been reinforced and tip cap is completely covered.)

4. Start wrapping 1/2-inch-wide electrical tape (item 3, appendix C) (4) on upper element (2) just below-pressure-sensitive tape (1), following tip contour while lightly stretching electrical tape (4). Wrap over top and back to starting position on element (2). (Repeat until entire tip assembly is completely covered and lower end is neatly tapered to upper element (2).)

CAUTION

Replace the electrical tape when excessively scuffed or weathered. The electrical insulating tape seals and protects the pressure-sensitive tape from the effects of sunlight and moisture.

ASSEMBLY OF ANTENNA ELEMENTS OF AS-1729 AND AT-912

1. Apply silicone compound (item 1, appendix C) to threads (2) of upper elements (1).
2. Screw upper element (1) into lower element (3) and handtighten.

NOTE

The bottom of the lower element (2) should cover the O-ring (4).
2-9. RT ANTENNAS AS-1729 AND AT-912. (CONT)

SECURING ASSEMBLED ANTENNA ELEMENTS TO MATCHING UNITS MX-2799 AND MX-6707

WARNING

Do not install antenna elements in an electrical storm.

PRELIMINARY PROCEDURE: Assemble antenna elements. (See page 2-27.)

Install tip cap. (See page 2-26.)

1. Apply silicone compound (item 1, appendix C) to O-ring (item 7, appendix C) (1) of threaded portion (2) of spring assembly (3).
2. Apply light coat of silicone compound (item 1, appendix C) to threaded portion (2) of spring assembly (3).
3. Screw lower element (4) on threaded portion (2) of spring assembly (3).

NOTE

When lower element (4) is properly seated on spring assembly (3), O-ring (1) cannot be seen.

4. Insert safety wire (item 2, appendix C) (5) through hole in lower element (4).
5. Insert other end of safety wire (5) through hole in spring assembly (3). Using flat-nose pliers, twist free ends of safety wire (5) three to six times, (pigtail method).
6. Cut excessive ends of safety wire (5). Bend remaining safety wire pigtail against hexagonal portion of spring assembly (3).

NOTE

The safety wire helps keep the lower element from coming loose from the spring while traveling.
2-9. RT ANTENNAS AS-1729 AND AT-912. (CONT)

TIEDOWN PROCEDURE FOR AS-1729 AND AT-912 ANTENNA ELEMENTS

PRELIMINARY PROCEDURE: Tie down the rope placed through tiedown assembly.

WARNING

Do not use RT for transmission while attaching the antenna tiedown assembly.

1. Slide locking jaw of tiedown assembly (1) around middle of upper element (2).

NOTE

Antenna element must be installed in tiedown assembly as illustrated to prevent antenna from coming loose.

2. Pull tiedown assembly rope (3) so antenna is at a 30° to 45° angle to ground.

CAUTION

Be sure that the tip of antenna is not projecting on the outside of the vehicle.

3. Tie both ends of tiedown assembly rope (3) to convenient places on the vehicle. The bowline knot is the typical tiedown method.

CAUTION

The use of a bowline knot is recommended to prevent damage to the antenna. The bowline knot will not come loose easily if the antenna should strike any object, preventing the antenna from returning to an upright position.

NOTE

Do not cross antenna elements when tying down.

The antenna may be used in the tied-down position.

If the end of tiedown rope unravels, cut off the unraveled part. Put the end over a frame for a moment to seal the threads.
2-10. AUXILIARY RECEIVER ANTENNA.

GENERAL

There are two different antenna bases used with the auxiliary receiver. The most common base used on wheeled vehicles is the AB-15/GR, which is the first Installation given. The AB-558/GR installation follows the AB-15/GR, followed by the remaining procedures which apply to both antennas.

AUX RECEIVER ANTENNA MOUNTING BRACKET

NOTE

For installation of AB-558/GR auxiliary antenna mounting bracket, see paragraph 2-9 for bracket mounting.

INSTALLATION OF AB-15 VEHICLE MOUNTING BRACKET

TOOLS: Tool Kit, Electronic Equipment TK-101/G

PRELIMINARY PROCEDURE: Have motor pool drill holes into vehicle.

1. Insert reinforcing plate (1) and two nut plates (2) inside wall of vehicle (3) and align holes.
2. Place mounting bracket (4) against vehicle wall (3).
3. Insert four hex bolts (5) through star washer (6), bracket (4) and into nut plates (2).
2-10. AUXILIARY RECEIVER ANTENNA. (CONT)

INSTALLATION OF ANTENNA BASES AB-15/GR AND AB-558/GR

TOOLS: Tool Kit, Electronic Equipment TK-101/G

PRELIMINARY PROCEDURE: Secure mounting brackets to vehicle.

Installation of AB-15/GR

1. Place rubber washer (1) and upper insulator (2) over vehicle's antenna mount (3).
2. Place lower insulator (4), rubber washer(6) and ground ring (5) from underneath vehicle's antenna mount (3).
3. Hold lower insulator (4) while tightening upper insulator (2) until snug.

CAUTION

Do not overtighten insulator. Possible cracking can occur.

4. Tighten base body (7) with a wrench.

Cabling of AB-15/GR

1. Remove binding post (1) from jack (2) and discard.
2. Connect Adaptor UG-273/U (4) to jack (2).
3. Slide grounding clamp (3) around UG-273/U (4) and tighten.
2-10. **AUXILIARY RECEIVER ANTENNA.** (CONT)

Installation of AB-558/GR

1. Place gasket (1) around AB-558/GR (2).
2. Place AB-558/GR (2) into mounting bracket (3).
3. Insert two bolts (4) and lockwashers (5) through AB-558/GR (2).
4. Place two nuts (6) on bolts (4) and tighten until snug.

Cabling of AB-558/GR

1. Remove binding post assembly (7) and discard.
2. Connect Adaptor UG-273/U (10) to jack (9).
3. Place grounding clamp (8) on Adaptor UG-273/U (10) and tighten.
4. Insert screw (1) and star washer (2) through hole in mounting bracket (3).
5. Place first of two star washers (4), grounding lug (5), second star washer (4) and nut (6) on screw (1) and tighten.
2-10. AUXILIARY RECEIVER ANTENNA. (CONT)

INSTALLATION OF UPPER ELEMENT MS-118 AND TIP CAP: See paragraph 2-9

ASSEMBLY OF ANTENNA ELEMENTS MS-116, MS-117, AND MS-118

1. Apply silicone compound (item 1, appendix C) to threads of upper element (1) and middle element (2).
2. Screw middle element (2) into lower element (3).
3. Screw upper element (1) into middle element (2) and lower element (3). Handtighten.

SECURING ASSEMBLED ANTENNA ELEMENT TO ANTENNA BASE

1. Apply silicone compound (Item 1, appendix C) to threads of lower element (1).
2. Screw lower element (1) into antenna base (2).

TIEDOWN PROCEDURE FOR AB-15/GR AND AB-558/GR

See tiedown procedure for AS-1729 and AT-912, paragraph 2-9
2-11. RECEIVER-TRANSMITTERS RT-524(*)/VRC AND RT-246(*)/VRC.

WARNING

The receiver-transmitters are compact and heavy (over 60 lb). Be very careful when handling them. An object of such weight is considered a two-man lift.

Remove (turn off) power from a connector before removing or installing a cable. Connector pins may be damaged due to arcing. Extreme electrical hazards may exist that could cause death.

HANDLING RT-524/VRC-AND RT-246/VRC

Use the guards/handles when handling RT.

CAUTION

Set the RT on any of its sides, except the rear of the unit. The blower assembly may be damaged by such things as stones, metal objects and mud lying on the ground or floor.
2-11. RECEIVER-TRANSMITTERS RT-524/VRC AND RT-246/VRC. (CONT)

CAUTION

Before installing (or removing) an RT from its mount, turn off the POWER switch on the RT. Plug/jack pins may be damaged due to arcing.

INSTALLATION OF RT-524/VRC OR RT-246/VRC

PRELIMINARY PROCEDURE: RT antenna must be installed and cabled. (See paragraph 2-15.)

INITIAL PROCEDURE: Remove electrical cover.

CAUTION

Before putting the RT on its MT-1029/VRC, clean mount’s top tray. Remove the electrical cover from mount’s jack (J24) and insure that it and its chain will not be in the way of the RT. Damage to the RT plug (P401) could occur.

NOTE

1. Lift RT. Set it on mount’s top tray.
2. Line up back of RT with guide pins on mount’s rear wall.
3. Push RT straight back into mount.

CAUTION

Be careful to keep RT flat on mount tray when sliding RT into (or out of) MT-1029/VRC. Damage to jack (J24) pins of the mount and RT plug (P401) will occur.

4. Lift up each clamp and tighten thumbscrews to lock RT to its mounting. Fingertighten.

CAUTION

When RT is removed from MT-1029/VRC, put the electrical connector cover on the radio jack (J24). Damage to the jack pins can occur.
2-11. RECEIVER-TRANSMITTERS RT-524(*)/VRC AND RT-246(*)/VRC. (CONT)

CABLING OF RT-524/VRC OR RT-246/VRC

1. Connect control cable (CX-4722) plug (1) to ANT CONT jack (2) of RT. Turn clockwise until plug locks into place.
2. Connect rf cable (CG-1773) plug (3) to ANT jack (4) of RT. Turn clockwise until plug locks into place.

<table>
<thead>
<tr>
<th>CABLE</th>
<th>ASSEMBLY</th>
<th>JACK</th>
<th>CABLE PLUG</th>
<th>ASSEMBLY</th>
<th>JACK</th>
<th>CABLE PLUG</th>
</tr>
</thead>
<tbody>
<tr>
<td>CX-4722</td>
<td>RT-524(*)/VRC or</td>
<td>ANT</td>
<td>P1</td>
<td>MX-2799 or MX-6707</td>
<td>J2</td>
<td>P2</td>
</tr>
<tr>
<td></td>
<td>RT-246(*)/VRC</td>
<td>CONT</td>
<td></td>
<td></td>
<td>J551</td>
<td></td>
</tr>
<tr>
<td>CG-1773</td>
<td>RT-524(*)/VRC or</td>
<td>ANT</td>
<td>P1</td>
<td>MX-2799 or MX-6707</td>
<td>J1</td>
<td>P2</td>
</tr>
<tr>
<td></td>
<td>RT-246(*)/VRC</td>
<td></td>
<td></td>
<td></td>
<td>J552</td>
<td></td>
</tr>
</tbody>
</table>

NOTE

Cabling applies to A-RT of all AN/VRC-12 configurations. It also applies to C-RT of AN/VRC-45 and -49 configurations.

When RT to be operated is without speech-securing equipment, X-mode plug must be connected to RT's X-mode jack.

See paragraph 2-9 for cabling of RT antenna. See paragraph 1-14 for connecting audio accessories.
2-12. RADIO SET CONTROL C-2742/VRC.

CAUTION

Set RT-246 POWER to OFF. Turn to OFF all communications equipment. Serious arcing will occur, causing damage to connector pins.

INSTALLATION OF C-2742/VRC

1. Lineup plug keyway with jack key.
2. Carefully turn plug until it drops into jack. (If plug orientation is not correct, see paragraph 2-4 for detailed procedure.)
3. Lift and turn wingnut clockwise until plug is locked into jack. Fingertighten only.

TANDEM INSTALLATION
2-12. RADIO SET CONTROL C-2742/VRC. (CONT)

CABLING C-2742/VRC

<table>
<thead>
<tr>
<th>CABLE</th>
<th>ASSEMBLY</th>
<th>JACK</th>
<th>CABLE PLUG</th>
<th>ASSEMBLY</th>
<th>JACK</th>
<th>CABLE PLUG</th>
</tr>
</thead>
<tbody>
<tr>
<td>CX-7059/VRC</td>
<td>C-2742/VRC</td>
<td>J71</td>
<td>P2</td>
<td>RT-246 (AN/VRC-12, -43, -44, -45)</td>
<td>RE-MOTE</td>
<td>P1</td>
</tr>
<tr>
<td>CX-4723/VRC</td>
<td>Primary C-2742/VRC</td>
<td>J72</td>
<td></td>
<td>Tandem C-2742/VRC (AN/vRC-12, -43, -44, -45)</td>
<td>J71</td>
<td></td>
</tr>
</tbody>
</table>

2-13. RADIO SET CONTROL C-2299/VRC.

WARNING

Turn off the vehicle engine. Turn off all radio equipment.

1. Line up plug keyway with jack key.
2. Carefully turn plug until it drops into jack. (If plug orientation is not correct, see paragraph 2-4 for detailed procedure.)
3. Lift and turn wingnut clockwise until plug is locked into jack. Fingertighten only.
2-13. RADIO SET CONTROL C-2299/VRC. (CONT)

CABLING C-2299/VRC

<table>
<thead>
<tr>
<th>CABLE</th>
<th>ASSEMBLY</th>
<th>JACK</th>
<th>CABLE PLUG</th>
<th>ASSEMBLY</th>
<th>JACK</th>
<th>CABLE PLUG</th>
</tr>
</thead>
<tbody>
<tr>
<td>CX-4723/VRC</td>
<td>C-2299/VRC</td>
<td>J701</td>
<td></td>
<td>A-RT Mount MT-1029/VRC (AN/VRC-12, -43, -44, -45, -49)</td>
<td>J22</td>
<td></td>
</tr>
<tr>
<td>CX-4723/VRC</td>
<td>C-2299/VRC</td>
<td>J702</td>
<td></td>
<td>C-RT Mount MT-1029 (AN/VRC-45, -49)</td>
<td>J22</td>
<td></td>
</tr>
</tbody>
</table>

See paragraph 2-4 for typical cabling of C-2299/VRC.
2-14. AUX RECEIVER R442(*)/VRC.

CAUTION

Turn off the vehicle power and radio equipment. Disconnect CX-4720/VRC from vehicle dc power outlet. Serious arcing will occur, causing damage to connector pins.

HANDLING R-442/VRC

Use the guards/handles when carrying the R-442/VRC.

INSTALLING AUXILIARY RECEIVER R-442/VRC

INITIAL PROCEDURE

Before putting the R-442 on the MT-1898, clean the MT-1898 top tray. Remove the electrical cover from the MT-1898 radio jack (J14) and insure that it and its chain are not in the way of the R-442. Inspect mount jack (J14) and R-442 plug (P201) and guide pins (e.g., bent, broken or missing pins).

TO INSTALL:

1. Lift R-442. Set it on mount’s top tray.
2. Lineup back of R-442 with guide pins on mount’s rear wall.
3. Push R-442 straight back into mount.

CAUTION

Be careful to keep R-442 flat on mount’s tray when sliding R-442 into (or out of) MT-189/VRC. Damage to jack (J14) pins of the mount and R-442 plug (P201) will occur.

4. Lift up clamp and fingertighten the thumbscrew to lock R-442 to its mounting.
2-14. AUX RECEIVER R-442 (*)/VRC. (CONT)

CAUTION

When the R-442 is removed from the MT-1898/VRC, put the electrical connector cover on the radio jack (J14). Damage to the jack pins can occur.

CABLING OF R-442: See paragraph 2-10 for cabling of auxiliary receiver antenna. Some installations require the use of Adapter UG-306/U.

![Diagram of R-442 and associated components]

TYPICAL CABLEING

For installations where there are two auxiliary receivers, the B- and C-receivers are coupled together and the auxiliary receiver antenna is connected to one of the receivers. Coupling is done by connecting together the closest ANT jacks on the B- and C-receivers using Cable CG-1127/U. Plug P1 on CG-1127/U is identical to P2 so either plug can be attached to either auxiliary receiver.

CABLING - STANDARD

<table>
<thead>
<tr>
<th>CABLE</th>
<th>FROM</th>
<th>CABLE PLUG</th>
<th>TO</th>
<th>ASSEMBLY</th>
<th>JACK</th>
<th>CABLE PLUG</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG-1773/U</td>
<td>B-Receiver</td>
<td>ANT (Either)</td>
<td>Antenna Base AB-15/GR or AB-558/GR (AN/VRC -12, -47)</td>
<td>Antenna Base AB-15/GR or AB-558/GR (AN/VRC -44, -48)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG-1773/U</td>
<td>C-Receiver</td>
<td>ANT</td>
<td>C-Receiver (AN/VRC -44, -48)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG-1127/U</td>
<td>B-Receiver</td>
<td>ANT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2-15. DETERMINING POSITION OF POWER CONTROL LINK OF A RADIO MOUNT.

PRELIMINARY PROCEDURE: Turn off vehicle engine.

VERIFICATION

1. Other than A-RT, in turn, set additional radio component POWER switches to ON (C-RT or C-R-442 and/or B-R-442). If additional radio component dial lamp lights, change link position from DIRECT to REMOTE.
2. Turn A-RT POWER switch to ON (LOW). If A-RT dial lamp lights, link position is in DIRECT.

NOTE

All radio component lamps should now light. If they do not, trouble exists within the system.

If all the lamps do not light, see chapter 3, section III, Troubleshooting.

2-16. DETERMINING POSITION OF X-MODE SWITCH OF AN RT.

NOTE

The following apply to any RT on any type of RT mount.

The X-MODE-NORMAL switch inside your RT should be in the X-MODE position for both NORMAL and X-MODE operation.
2.16. DETERMINING POSITION OF X-MODE SWITCH OF AN RT. (CONT)

RT X-MODE SWITCH CHECK

1. Turn SQUELCH switch to either OFF positions (NEW OFF or OLD OFF).
2. Turn VOLUME control to midrange position.
3. Turn LIGHT switch to ON.
4. For RT-524, turn WEAKER switch to ON.
5. For RT-246, connect an audio accessory (headset, speaker, etc) to SPKR jack.
6. Turn POWER switch to LOW. You should hear a rushing noise (hissing sound).

NOTE

If there is no rushing noise, RT is defective. See chapter 3, section III, Troubleshooting.
2-16. DETERMINING POSITION OF X-MODE SWITCH OF AN RT. (CONT)

RT X-MODE SWITCH CHECK (CONT)

7. Remove X-MODE plug from RT X-MODE jack (or unplug Vinson cable from RT X-MODE jack). Rushing noise should disappear.

NOTE

If rushing noise does not disappear, the RT internal X-MODE switch is probably in the NORMAL position. See paragraph 3-16, for changing X-MODE switch position.

8. Replace X-MODE switch (or Vinson cable). Rushing noise should reappear. If the noise does not reappear, see chapter 3, section III, Troubleshooting.

2-17. DETERMINING POSITION OF X-MODE SWITCH OF R-442.

NOTE

When any aux receiver is installed in a Vinson aux receiver mount, the internal X-MODE-NORMAL switch must be in the X-MODE position.

When any aux receiver is installed on a regular aux receiver mount, the internal X-MODE-NORMAL switch must be in the NORMAL position.
CHAPTER 3

MAINTENANCE INSTRUCTIONS

OVERVIEW

This chapter contains information concerning maintenance for the AN/VRC-12 series radio sets at the organizational maintenance level. Troubleshooting is done on a radio set installed in a wheeled vehicle. Organizational maintenance procedures are provided for individual components of the radio set. When similar maintenance is done for more than one component, those components are grouped together.

Section I REPAIR PARTS, SPECIAL TOOLS, TMDE AND SUPPORT EQUIPMENT

3-1. COMMON TOOLS AND EQUIPMENT.

For authorized common tools and equipment, refer to the table that is applicable to your unit:

- Modified Table of Organization and Equipment [appendix B]
- Tables of Distribution and Allowance [appendix B]
- Joint Tables of Allowance (JTA)
- Common Tables of Allowances (CTA)

3-2. SPECIAL TOOLS, TMDE AND SUPPORT EQUIPMENT.

Tools, test equipment (TMDE) and support equipment are listed in the Maintenance Allocation Chart (MAC), [appendix B]
3-3. REPAIR PARTS.

Repair parts needed for organizational maintenance can be found in the following manual:

TM 11-5820-401-20P

AN/VRC-12 series radio set components: RT 524(*)/VRC, RT 246(*)/VRC, RCVR 442 (*)/VRC, RT Antennas, Auxiliary RCVR Antennas, Mountings 1029/VRC and 1898/VRC, Controls C-2299 and C-2742.

Spare Parts and Special Tools List

Section II ORGANIZATIONAL PREVENTIVE MAINTENANCE CHECKS AND SERVICES (PMCS)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Para</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>3-4</td>
<td>3-2</td>
</tr>
<tr>
<td>Organizational Maintenance Level Preventive Maintenance Checks and Services (PMCS)</td>
<td>3-5</td>
<td>3-3</td>
</tr>
<tr>
<td>Cleaning and Touchup Painting</td>
<td>3-6</td>
<td>3-12</td>
</tr>
</tbody>
</table>

3-4. GENERAL

As specified in this section, Preventive Maintenance Checks and Services (PMCS) are done to:

1. Spot small radio set problems and correct them before they cause serious problems.
2. Keep the radio equipment in good physical condition.
3. Insure that each component is functioning properly, both as an individual component and with other components of the radio set as installed.

Organizational maintenance level PMCS for radio sets are normally done on a monthly and quarterly basis as scheduled on DD Form 314, Preventive Maintenance Schedule and Record. Your supervisor will establish a Monthly and Quarterly PMCS schedule (DD Form 314) for each wheeled vehicle that has a radio set, but this PMCS may be done on a more frequent basis as directed by your supervisor.

Monthly (M) PMCS would be scheduled, for example: 12 January, 12 February, 12 March, etc. Quarterly (Q) PMCS, done every three months, would be scheduled, for example: 12 January, 12 April, 12 July, etc. The organizational level checks and services are listed in paragraph 3-5.

A record of any faults found during periodic PMCS and the corrective actions taken should be maintained on DA Form 2404, Equipment Inspection and Maintenance Worksheet.

A faulty item of equipment that cannot be repaired at the organizational maintenance level will be sent to the next higher level of maintenance, accompanied by a DA Form 2407, Maintenance Request.

NOTE

Complete instructions for the use, completion and disposition of maintenance forms and records are contained in DA Pam 738-750, The Army Maintenance Management System (TAMMS).
3-5. ORGANIZATIONAL MAINTENANCE LEVEL PREVENTIVE MAINTENANCE CHECKS AND SERVICES (PMCS).

Organizational level PMCS for C-E equipment are done to insure that your unit’s radio equipment is in top operating condition. A comprehensive PMCS program reduces equipment downtime and increases your unit’s operational readiness.

Some PMCS are considered to be routine and should be done anytime you see that they need to be done. For some items of equipment, routine PMCS are not listed in the PMCS table. Routine PMCS that are listed in the PMCS table are there because others have reported unusual or significant problems with a particular item of equipment.

Some routine PMCS would include the following:

1. Check and insure that the vehicle’s radio set as installed is complete. Refer to TM 11-5820-401-10-2-HR for examples of hand receipts where end item listings can be used to inventory the equipment.

 CAUTION

 Use only clear water and a rag to clean plastic surfaces. Do not paint plastic surface. Damage to plastic will result if cleaned with solvent, or painted.

2. Check equipment surfaces for corrosion, rust and fungus. Clean and touch up paint as appropriate. General procedures are contained in paragraph 3-6.

3. Check the controls of components to insure that knobs are not missing, broken or loose, and that controls turn properly. Detailed instructions for replacing control knobs are in chapter 3, section IV.

4. Check for loose plugs and jacks. Tighten cable plug lockrings and cable restraining devices (glands). If a plug has an O-ring, check and insure that it is properly installed and lubricated. Tighten component jack lockrings.

5. Check plug-to-jack connections and insure proper plug orientation and tightness of connections. See chapter 2, section III for cable installation and orientation of plugs and cables.

6. Check for loose mountings, hardware, brackets, etc. Tighten as appropriate. Replacement procedures for the specific item of equipment are contained in chapter 3, section IV.

 WARNING

 Insure that the correct type of bolts or screws, star washers and nuts are used and properly assembled. Severe electrical hazards exist when items of equipment are not properly installed and grounded.

7. Check for bent or missing mounting guides and connector pins. All unused jacks must have protective (dust) covers installed. Refer to TM 11-5820-401-10-1 for typical cabling diagrams that will assist in identifying unused jacks of a specific wheeled vehicle’s radio set,
8. Check cables for fraying, cuts, cracks, dry rot, or other damage and fix or replace as appropriate. Check for improperly routed cables. Refer to an appropriate 2300 series installation manual for cable routing instructions.

NOTE

Before doing the PMCS listed below, check and insure that all current Modification Work Orders (MWO’S) for the specific radio set have been accomplished. DA Pam 310-1, Consolidated Index of Army Publications and Blank Forms (microfiche), paragraph 82, contains a listing of current MWO’S for communications-electronics equipment.

1. As a minimum, the • in the INTERVAL column indicates when a check and service should be done, as follows: M-Monthly, and Q-Quarterly.

2. The numbers in the ITEM NO. column show the order in which the check or service should be done. These numbers should be used when recording deficiencies and shortcomings on DA Form 2404.

3. Perform routine preventive maintenance as required when inspecting each item.

4. If your RT and AUX receiver has not been aligned within a year from stamped date, they must be turned into DS maintenance for alignment.

5. All RT’s and AUX receivers in storage must be aligned yearly or when put into use from storage, whichever occurs first.

M-MONTHLY vs. Q-QUARTERLY

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>INTERVAL</th>
<th>ITEM TO BE INSPECTED</th>
<th>PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>●</td>
<td>Elements</td>
<td>Check antenna elements for damage (e.g., split or shortened 6 or more inches, stripped threads, etc). Replace damaged elements. (See paragraph 3-18)</td>
</tr>
<tr>
<td>2</td>
<td>●</td>
<td>Element Threads</td>
<td>Clean and lubricate threads. (Use silicone compound, item 1, appendix C)</td>
</tr>
</tbody>
</table>

WARNING

Do not transmit on the RT while handling the antenna.

3-4 Change 1
3-5. ORGANIZATIONAL MAINTENANCE LEVEL PREVENTIVE MAINTENANCE CHECKS AND SERVICES (PMCS). (CONT)

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>INTERVAL</th>
<th>ITEM TO BE INSPECTED</th>
<th>PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>M - - - -</td>
<td>Element Contacts RT Antenna</td>
<td>Check that tip contact sticks up from the top of the spring assembly about 1/8 Inch. Check that it is not loose and O-ring is in place. Adjust contact. (See paragraph 2-9.)</td>
</tr>
<tr>
<td></td>
<td>Q - - - -</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram:
- Tip Contact
- O-Ring
- Horseshoe Contact

Check that horseshoe contact inside bore of lower element is not broken or missing. Replace if broken or missing. (See paragraph 2-9).
3-5. ORGANIZATIONAL MAINTENANCE LEVEL PREVENTIVE MAINTENANCE CHECKS AND SERVICES (PMCS). (CONT)

M-MONTHLY

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>INTERVAL</th>
<th>ITEM TO BE INSPECTED</th>
<th>PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>O-Ring and Safety Wire</td>
<td></td>
</tr>
</tbody>
</table>

Check that O-ring on threaded portion of spring assembly can not be seen when lower element is in place. If seen, see paragraph 2-9.

Check that safety wire is in place to secure lower element to spring assembly. Install new wire if missing or broken. (See paragraph 2-9)

CAUTION

Do not overtighten lower element to spring assembly or you may damage contacts.
3-5. ORGANIZATIONAL MAINTENANCE LEVEL PREVENTIVE MAINTENANCE CHECK AND SERVICES (PMCS). (CONT)

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>INTERVAL</th>
<th>ITEM TO BE INSPECTED</th>
<th>PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>M</td>
<td>Ground Strap</td>
<td>Check that ground strap is securely connected. Secure or replace if frayed or damaged. (See paragraph 2-9)</td>
</tr>
<tr>
<td></td>
<td>Q</td>
<td>AS-1729/VRC Aux RCVR</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>Tip Cap</td>
<td>Check for cracked, loose or missing tip cap. Replace cracked tip cap and secure to top antenna element. (See paragraph 2-9)</td>
</tr>
<tr>
<td></td>
<td>Q</td>
<td>AS-1729/VRC AT-912/VRC Aux RCVR</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>Tiedown</td>
<td>Check that the tiedown rope is connected to the proper place on the vehicle and adjusted to tie the antenna whip down between a 30° and 45° angle to keep tip cap about 9 feet above ground. (See paragraph 2-9)</td>
</tr>
<tr>
<td></td>
<td>Q</td>
<td>AS-1729/VRC AT-912/VRC Aux RCVR</td>
<td></td>
</tr>
</tbody>
</table>

WARNING

Severe electrical hazard exists if equipment is not securely grounded.

CAUTION

Insure that tip will not swing beyond the side of the vehicle.
3-5. ORGANIZATIONAL MAINTENANCE LEVEL Preventive Maintenance CHECKS AND SERVICES (PMCS). (CONT)

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>INTERVAL</th>
<th>ITEM TO BE INSPECTED</th>
<th>PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M-MONTHLY

- **ITEM 8**
 - M: Water Drain Matching Unit MX-6707 Only

Q-QUARTERLY

- **PROCEDURE**
 - Drain all water trapped inside the matching unit.

Additional Information

- Check that all plain models of RT have handles over front panel guards. Install if missing.
 - (See paragraph 3-16)
3-5. Organizational Maintenance LEVEL Preventive Maintenance CHECKS AND SERVICES (PMCS). (CONT)

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>INTERVAL</th>
<th>ITEM TO BE INSPECTED</th>
<th>PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>M</td>
<td>Heat Exchanger</td>
<td>Clean heat exchanger with a stiff bristle brush to remove hard dirt and a soft bristle brush to remove loose dirt. See paragraph 3-16.</td>
</tr>
</tbody>
</table>

CAUTION

On early model RT mountings, a special vent cover is provided. This vent cover must be installed when RT is in operation.

NOTE

To prevent dirt from entering inside RT, do not remove top and bottom covers.

In dusty areas such as deserts, cleaning may be required monthly or weekly.
3-5. ORGANIZATIONAL MAINTENANCE LEVEL PREVENTIVE MAINTENANCE CHECKS AND SERVICES (PMCS). (CONT)

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>INTERVAL</th>
<th>ITEM TO BE INSPECTED</th>
<th>PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>Q</td>
<td></td>
</tr>
</tbody>
</table>

M-MONTHLY

<table>
<thead>
<tr>
<th>ITEM TO BE INSPECTED</th>
<th>PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground Strap</td>
<td>Clean vent on Mounting MT-1029/VRC when RT is removed for cleaning of heat exchanger.</td>
</tr>
</tbody>
</table>

Q-QUARTERLY

<table>
<thead>
<tr>
<th>ITEM TO BE INSPECTED</th>
<th>PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground Strap</td>
<td>Check ground strap between mounting base Assembly and top tray for proper connection, Replace if frayed or damaged. (See Paragraph 2-9)</td>
</tr>
</tbody>
</table>

NOTE

MT-1029 mounts produced after 1972 have only one ground strap.

WARNING

Severe electrical hazard exists if equipment is not properly grounded.
3-5. ORGANIZATIONAL MAINTENANCE LEVEL PREVENTIVE MAINTENANCE CHECKS AND SERVICES (PMCS). (CONT)

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>INTERVAL</th>
<th>ITEM TO BE INSPECTED</th>
<th>PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>●</td>
<td>Shock (Resilient) Mounts</td>
<td>Check that top tray is secured to base assembly. If loose, replace broken resilient mount. (See paragraph 3-19)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RADIO SET</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>●</td>
<td>Cable Connections</td>
<td>Check that cable plug and component jack lockrings are tight to prevent twisting of cables and possible damage to equipment internal wiring. Tighten with spanner wrench. Tighten loose cable restraint's (gland) nut.</td>
</tr>
</tbody>
</table>

NOTE

MT-1029 has five shock mounts; MT-1898 has four.

CAUTION

Do not attempt to change cable orientation by rotating loose equipment jacks. Damage to internal wiring could occur. Change cable orientation by loosening locknuts on cable plugs and rotating position of keyway on plug.
3-5. ORGANIZATIONAL Maintenance LEVEL Preventive Maintenance CHECKS AND SERVICES (PMCS). (CONT)

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>INTERVAL</th>
<th>ITEM TO BE INSPECTED</th>
<th>PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>M</td>
<td>Communications System</td>
<td>Do the operational check procedures to check communications system performance and combat readiness. See paragraph 3-13 for procedures.</td>
</tr>
</tbody>
</table>

3-6. CLEANING AND TOUCHUP PAINTING.

WARNING

TRICHLOROTRIFLUOROETHANE

Fumes of TRICHLOROTRIFLUOROETHANE are poisonous. Provide adequate ventilation whenever you use TRICHLOROTRIFLUOROETHANE. Do not use solvent near heat or open flame. TRICHLOROTRIFLUOROETHANE will not burn, but heat changes the gas into poisonous, irritating fumes. DO NOT breathe the fumes or vapors. TRICHLOROTRIFLUOROETHANE dissolves natural skin oils. DO NOT get the solvent on your skin. Use gloves, sleeves and an apron which the solvent cannot penetrate. If the solvent is taken internally, consult a physician immediately.

CAUTION

Use only clear water and a rag to clean plastic surfaces. Do not paint a plastic surface. Damage to plastic will result if cleaned with solvents or painted.

Equipment should be kept free of dirt, grease, rust, fungus, and corrosion. Clean and dust the outside surfaces frequently with a lint-free cloth dampened with cleaning compound (item 6, except antenna matching units).

Clean the plastic body of antenna matching units with clear water. Inspect plastic body for hairline cracks.

Remove rust and corrosion from metal surfaces by lightly sanding them with fine sandpaper. Brush two thin coats of paint on the bore metal to protect it from further corrosion. Refer to applicable painting and refinishing instructions given in SB 11-573 and TB 43-0118.

NOTE

Heat-reflecting paint should be applied to the receiver-transmitters and aux receivers that are used in open vehicles that are continually exposed to the sun. This paint requires special application procedures and should be referred to a higher level of maintenance.
Section III TROUBLESHOOTING

3-7. GENERAL.

This section provides the techniques and procedures (troubleshooting methods) that are used to troubleshoot a wheeled vehicle’s radio set and identify a bad item of equipment.

Troubleshooting methods for typical radio sets are presented in the form of flow charts. These flow charts are used to systematically get from the symptoms of trouble to the actual bad item of equipment by specifying only essential information.

The troubleshooting flow charts provided in this section are based on the AN/VRC-12 series radio sets normally installed in M151 1/4-ton general-purpose utility vehicles and M882 1 1/4-ton trucks. Troubleshooting can be done on any other wheeled vehicle radio set configuration by using the methods presented by the flow charts and allowing for variations of installed equipment.

TROUBLESHOOTING

Troubleshooting is done on a faulty (non-operational) radio set to identify and then repair the item of equipment causing the radio set to be non-operational. Troubleshooting is not done on an operational radio set. To determine if troubleshooting is required, the suspected radio set first should be evaluated using the operational check procedure provided in chapter 3, section IV. If symptoms of trouble are observed when doing the operational check procedure, troubleshooting should be initiated. Based on the observed symptoms of trouble, troubleshooting for any radio set consists of four basic steps.

1. Interpret the symptoms of trouble as to a circuit of the radio set that, when bad, would cause the problem. For example:

 The RT’s antenna matching unit does not tune when the RT’s MC-TUNE-KC controls are changed from 67.05 to 62.20 MHz denotes that the control circuit between the RT and its antenna matching unit is bad.

2. For the determined bad circuit, analyze and interpret an appropriate circuit diagram as to:

 a. All items of equipment involved in the circuit’s operation.

 b. How the circuit is intended to work (operate).

 c. Type of problem encountered. (See paragraph 3-8)
3-7. GENERAL. (CONT)

NOTE

Circuit diagrams for the individual circuits of a typical radio set are provided as foldouts at the rear of this manual. Principles of operation of the various circuits of a typical radio set are provided in [chapter 1], section III.

3. Based on the results of 2 above, again analyze the faulty circuit’s diagram as to the best troubleshooting approach (t/s method) to include appropriate t/s techniques and a procedure.

 a. Examples of t/s techniques include voltage tracing, circuit disturbing, continuity checking, and circuit substituting.

 b. A t/s procedure means to establish, by test points, the sequential order the t/s techniques should be done to obtain valid conclusions.

4. Based on the results of 3 above, apply the t/s method within the radio set’s faulty circuit to the point where the actual bad item of equipment is identified.

After troubleshooting has identified the actual bad item of equipment, repair that item of equipment by fixing its problem or replacing the item with a good item of the same type. After a repair action has been accomplished, again evaluate the operation of the radio set to see if the repair is effective and that no other faults exist.

3-8. TYPES OF PROBLEMS.

Problems within a radio set can normally be cataloged as to an adverse open or an adverse short. If, when doing the operational check, a function:

1. Does not occur when it should, an item of equipment within the affected circuit probably contains an adverse open.

2. Occurs before it should, an item of equipment within the affected circuit probably contains an adverse short.

Determining the type of problem before troubleshooting a bad circuit will speed up the troubleshooting process in that the best troubleshooting method can be more easily determined.

3-9. TROUBLESHOOTING PROCEDURES.

The troubleshooting flow charts of this section are based on the four steps of troubleshooting presented in [paragraph 3-7]. Based on the observed symptoms of trouble, each chart presents an easy-to-follow procedure, including specific troubleshooting techniques that, when followed, will identify the faulty item of equipment.
3-9. TROUBLESHOOTING PROCEDURES. (CONT)

NOTE

The troubleshooting procedure will isolate only one fault at a time. After the fault has been found and corrected, repeat the operational check to see if the repair corrected the problem and then to see if there are any additional faults.

When using a particular flow chart procedure, follow along on the appropriate circuit diagram. Note 1 of each chart will reference a specific circuit diagram and the circuit diagrams are provided as foldouts (FO) at the rear of this manual.

3-10. EXPLANATION OF SYMBOLS AND NOTES.

SYMBOL

EXPLANATION

Test Procedure Start: (Rectangle with rounded corners) Indicates start of the test procedure and contains a brief description of the symptom of trouble.

Test Procedure Flow Line: (Heavy line and arrow-head) Indicates direction of the procedure flow.

Test Procedure Instruction: (Rectangle) Provides instructions for doing a specific test (t/s technique).

Decision: (Diamond) Indicates that a decision must be made (YES or NO) in answer to a question about the previous test. Path taken depends on the answer (YES or NO).

Connector: (Circle) Directs user to an entry point of another chart. Contains an entry number(#) that is same as entry number of other chart and a sheet number (Sh #) that indicates the number of follow-on pages.

Notes Column: Presents additional critical information, such as: more specific Instructions about how to do a test, cautions and warnings that must be observed when doing a test, and additional information about what to do after doing a test, Also provides references to appropriate circuit diagrams,'
3-11. SELECTING PROPER FLOW CHART.

Selecting the proper flow chart is dependent upon the symptoms of trouble observed when doing a particular step of the operational check. The operational check procedure is provided at [chapter 3] section IV. When abnormal indications are observed as the result of doing the actions specified for a particular step, that step will either state the faulty item of equipment or will reference a specific troubleshooting flow chart. Simply follow the direction of the operational check step to get to the correct troubleshooting chart.

HOW TO USE A FLOW CHART

After selecting a proper flow chart as described in [paragraph 3-11], proceed as follows:

1. Do the actions described in the first rectangle.

2. Answer YES or NO to the question asked in the diamond that follows the first rectangle.

3. Go to the next step as directed by the answer to the YES/NO question.

4. Do additional steps as required, and directed, until the actual bad item of equipment is identified, and then follow the repair instruction presented in that box.

5. Repeat operational check after each repair is completed.

WARNING

To guard against electrical shock, remove or tape exposed personal metal objects (e.g., watches, rings, medallions) before doing the procedure of any flow chart.

Within the flow charts, special symbols are used. They are:

1. Ω for ohms (measure of resistance).

2. ∞ for infinity (a number too high to express).

3. > for greater than.

4. < for less than.

Other important conditions and actions that pertain to the procedure of any flow chart are:

1. Before starting a procedure, the controls and cabling of the items of equipment of the radio set being checked must be as they were when the symptoms of trouble were observed.

2. Unless otherwise stated, all voltage measurements, resistance measurements, and circuit disturbance checks are to be made with respect to chassis ground (bare metal).
3-11. SELECTING PROPER FLOW CHART. (CONT)

3. To circuit disturb, set up the multimeter as an ohmmeter (Rx10 range). For detailed procedures on circuit disturbing an audio accessory, see paragraph 3-14.

4. To measure an ac talk-signal, set up the multimeter as an ac voltmeter (lowest range unless otherwise specified) and then connect the meter probes between the specified test point and chassis ground. Next, key the mike and note the meter reading. Finally, sharply whistle into the keyed mike and look to see if the meter reading changes. Any change of the ac voltage reading indicates the presence of the talk-signal.

CAUTION

To guard against equipment damage when making measurements or circuit disturbing with power applied, make sure the proper pins of the specified test point are used (selected) and that the meter probes do not touch.
3-12. TROUBLESHOOTING FLOW CHARTS.

CHART 1
Troubleshoot Power Input Circuit (Sheet 1 of 3)

NOTES

This chart is used to troubleshoot the power input in a wheeled vehicle in which the primary power cable (CX-4720) is directly connected to the vehicle batteries. Refer to TO-I in back of this manual.

2. Fix or replace and return to operational check at this time.

4. Inside J-box, check wiring from E24 to pin B of J24. Replace mount if not repairable.

5. Check J-box fuse 1. Check wiring inside J-box from J21, pin A to J24, pin A, then from J21, pin B to J24, pin B and J. Replace mount if not repairable.

NOTE
Mounts produced after 1972 do not have a fuse.
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 1
Troubleshoot Power Input Circuit (Sheet 2 of 3)

1. ONE, BUT NOT BOTH, VOLTAGE MEASUREMENTS AT J24, PIN J AND PIN B, IS 20 TO 30 VDC

 PIN B IS 20 TO 30 VDC AND PIN J IS NOT?

 YES → BAD A-RT MT-1029
 SEE NOTE 3

 NO → BAD A-RT MT-1029
 SEE NOTE 4

VOLTAGE MEASUREMENTS AT J24, PIN J AND PIN B, ARE NOT 20 TO 30 VDC

 WILL VEHICLE ENGINE START (CRANK)?

 YES → AT VEHICLE BATTERIES, VISUALLY INSPECT CONNECTION OF CX-4720. (WHITE/RED WIRE PAIR TO + AND BLACK/GREEN WIRE PAIR TO -)

 NO → REPORT CONDITION TO SUPERVISOR

3 SH 3
3.12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 1
Troubleshoot Power Input Circuit (Sheet 3 of 3)

1. CONNECTIONS ARE OK?
 YES → UNPLUG CX-4720 FROM A-RT MT-1029, J21. AT PLUG, P21, PIN B(+) TO PIN A (-), MEASURE VOLTAGE.
 NO → CORRECT ADVERSE CONDITIONS, THEN EVALUATE AGAIN

2. 20 TO 30 VDC?
 YES → BAD MT 1029
 NO → BAD CX-4720

SEE NOTE 2
SEE NOTE 5
NOTES

1. This chart is used to troubleshoot either the A-RT or C-RT earphone audio output circuit. Refer to [FO-1] in back of this manual.

2. Fix or replace and return to operational check at this time.

3. To test an earphone circuit, set up the multimeter as an ohmmeter, RX10, then circuit disturb at the audio accessory plug. Connect one lead to pin A, then tap pin B with the other lead while listening to the earphone for a clicking sound.

4. Leave meter connected to MT-1029, J24 for further tests.

5. For adverse A-RT, unplug CX-4723 from J701; for adverse C-RT, unplug CX-4723 from J702.

6. Make sure that audio plug and jack controls are clean and a serviceable O-ring is correctly installed.

3-12. TROUBLESHOOTING FLOWCHARTS. (CONT)

CHART 2
Troubleshoot RT’s Earphone Audio Circuit (Sheet 2 of 3)

2

UNPLUG ADDITIONAL AUDIO ACCESSORY FROM RT. REPEAT OPERATIONAL CHECK RT AUDIO OUTPUT.

RT AUDIO OUTPUT STEP OK ?

YES

NO

1 SH 1

3

BAD ADDITIONAL AUDIO ACCESSORY

SEE NOTE 2

REMOVE SUSPECT A OR C-RT FROM ITS MT-1029. AT VACATED J-24, PIN 5 TO PIN A, MEASURE RESISTANCE.

SEE NOTE 4

∞Ω ?

YES

BAD RT

SEE NOTE 2

NO

IS C-2299 CONNECTED ?

YES

UNPLUG APPROPRIATE CX-4723 FROM C-2299 (NOTE 5). READ METER.

SEE NOTE 4

NO

BAD MT-1029

SEE NOTE 7

4 SH 3
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 2
Troubleshoot RT's Earphone Audio Circuit (Sheet 3 of 3)

4

∞Ω?

YES
BAD C-2299
SEE NOTE 2

NO
UNPLUG CX-4723 FROM SUSPECT MT-1029 (A OR C), J22. READ METER.
SEE NOTE 4

∞Ω?

YES
BAD CX-4723
SEE NOTE 2

NO
BAD MT-1029
SEE NOTE 7
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 3
Troubleshoot RT's Speaker Audio Circuit (Sheet 1 of 3)

NOTES

1. This chart is used to troubleshoot either the A-RT or C-RT speaker audio output circuit. Refer to FO-1 in back of this manual.

2. Fix or replace and return to operational check at this time.

3. To test a speaker circuit, set up the multimeter as an ohmmeter, RX10, then circuit disturb at the audio accessory plug. Connect one lead to pin A, then tap pin E with the other lead while listening to the speaker for a clicking sound.

4. Leave meter connected for further tests.

5. For adverse A-RT, unplug CX-4723 from J701; for C-RT, unplug CX-4723 from J702.

6. Make sure that audio plug and jack contacts are clean and a serviceable O-ring is correctly installed.

3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 3
Troubleshoot RT's Speaker Audio Circuit (Sheet 2 of 3)

3

UNPLUG ADDITIONAL ACCESSORY FROM RT. REPEAT OPERATIONAL STEP RT AUDIO OUTPUT.

RT AUDIO OUTPUT STEP OK?

YES

BAD ADDITIONAL AUDIO ACCESSORY
SEE NOTE 2

NO

1

SH 1

4

UNPLUG ADVERSE LS-454 FROM ITS RT (NOTE 6). AT LS-154 AUDIO PLUG, CIRCUIT DISTURB.
SEE NOTE 3

DISTURB?

YES

2

SH 1

NO

BAD LS-454
SEE NOTE 2
3-12. TROUBLESHOOTING FLOWCHARTS. (CONT)

CHART 3
Troubleshoot RT's Speaker Audio Circuit (Sheet 3 of 3)

1. **IS C-2299 CONNECTED?**
 - **NO** → BAD MT-1029
 - SEE NOTE 7
 - **YES** → UNPLUG APPROPRIATE CX-4723 FROM C-2299 (NOTE 5). READ METER.

2. **∞Ω?**
 - **YES** → BAD C-2299
 - SEE NOTE 2
 - **NO** → UNPLUG CX-4723 FROM SUSPECT MT-1029 (A OR C) J22. READ METER.
 - SEE NOTE

3. **∞Ω?**
 - **YES** → BAD CX-4723
 - SEE NOTE 2
 - **NO** → BAD MT-1029
 - SEE NOTE 7
3-12. TROUBLESHOOTING FLOWCHARTS. (CONT)

CHART 4
Troubleshoot RT Antenna Matching (MX) Unit Control Circuit (Sheet 1 of 3)

NOTES

Refer to FO-1 in back of this manual.

Fix or replace and return to operational check at this time.

Matching unit control voltage chart for MX-2799 and MX-6707, Control cable is CX-4722.

MX-2799 OR 6707

<table>
<thead>
<tr>
<th>FREQUENCY</th>
<th>BAND</th>
<th>PIN DESIGNATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-33</td>
<td>LOW</td>
<td>A 24 0 0 0 0 0</td>
</tr>
<tr>
<td>33-37</td>
<td>LOW</td>
<td>A 24 0 0 0 0 0</td>
</tr>
<tr>
<td>37-42</td>
<td>LOW</td>
<td>A 24 0 0 0 0 0</td>
</tr>
<tr>
<td>42-47.5</td>
<td>LOW</td>
<td>A 24 0 0 0 0 0</td>
</tr>
<tr>
<td>47.5-53</td>
<td>LOW</td>
<td>A 24 0 0 0 0 0</td>
</tr>
<tr>
<td>53-56</td>
<td>HIGH</td>
<td>A 24 0 0 0 0 0</td>
</tr>
<tr>
<td>56-60</td>
<td>HIGH</td>
<td>A 24 0 0 0 0 0</td>
</tr>
<tr>
<td>60-65</td>
<td>HIGH</td>
<td>A 24 0 0 0 0 0</td>
</tr>
<tr>
<td>65-70.5</td>
<td>HIGH</td>
<td>A 24 0 0 0 0 0</td>
</tr>
<tr>
<td>70.5-76</td>
<td>HIGH</td>
<td>A 24 0 0 0 0 0</td>
</tr>
</tbody>
</table>

MX-9 146

CONTROL VOLTAGES AT P2 OF CX-13055

<table>
<thead>
<tr>
<th>SUB-BAND #1</th>
<th>FREQUENCY</th>
<th>BAND</th>
<th>PIN DESIGNATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30-33</td>
<td>A 24 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>33-37</td>
<td>A 24 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>37-42</td>
<td>A 24 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>42-47.5</td>
<td>A 24 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>47.5-53</td>
<td>A 24 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>53-56</td>
<td>B 24 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>56-60</td>
<td>B 24 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>60-65</td>
<td>B 24 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>65-70.5</td>
<td>B 24 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>70.5-76</td>
<td>B 24 0 0 0 0 0</td>
<td></td>
</tr>
</tbody>
</table>

4. Matching unit control voltage chart for MX-9146. Adaptor control cable is CX-13055 or CX-13184 and control cable is CX-4722.
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 4
Troubleshoot RT Antenna Matching (MX) Unit Control Circuit (Sheet 2 of 3)

1. UNPLUG CONTROL CABLE (CX-4722) FROM SUSPECT RT. AT SUSPECT RT'S ANT CONT JACK, REPEAT ABOVE VOLTAGE MEASUREMENTS.

 ALL VOLTAGES (0 AND 24) OK?

 YES → BAD CONTROL CABLE CX-4722
 SEE NOTE 2

 NO → BAD SUSPECT RT
 SEE NOTE 2

? AT ADAPTER CONTROL CABLE (CX-13055 OR CX-13184) PLUG P2 BASED ON RT'S MC SETTING AND ACCORDING TO MX-9146 CONTROL VOLTAGE CHART. MEASURE VOLTAGES. SEE NOTE 4.

 ALL VOLTAGES (0 AND 24) OK?

 YES → BAD MATCHING UNIT MX-9146
 SEE NOTE 2

 NO → 3 SH 3
UNPLUG ADAPTER CONTROL CABLE (CX-13055 OR CX-13184) PLUG P1 FROM CONTROLLABLE (CX-4722) PLUG P2. AT CONTROL CABLE PLUG P2 BASED ON RT'S MC SETTING AND ACCORDING TO MX-2799 OR 6707 CONTROL VOLTAGE CHART. MEASURE VOLTAGES.

SEE NOTE:

ALL VOLTAGES (0 AND 24) OK?

YES

BAD ADAPTER CONTROL CABLE CX-13055 OR CX-13184

SEE NOTE 4

NO

1 SH 2
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 5
Troubleshoot RT Keying Circuit (adverse open) (Sheet 1 of 1)

RT FAILS TO KEY
SEE NOTE 1

AT RT RETRANSMIT JACK, SHORT PIN C TO GROUND

RT KEYS ?
YES
BAD AUDIO ACCESSORY
SEE NOTE 2

NO
BAD RT
SEE NOTE 2

NOTES
1. This chart is used to troubleshoot either the A-RT or C-RT keying circuit. Refer to NOTE in back of this manual.

2. Fix or replace and return to operational check at this time.
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 6
Troubleshoot RT Keying Circuit (Adverse Short) (Sheet 1 of 3)

NOTES

1. This chart is used to troubleshoot either the A-RT or C-RT keying circuit. Refer to [FO:1] in back of this manual.

2. Fix or replace and return to operational check at this time.

3. Leave meter connected to MT-1029, J24 for further tests.

4. For adverse A-RT, unplug CX-4723 from J701; for adverse C-RT, unplug CX-4723 from J702.

3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 6
Troubleshoot RT Keying Circuit (Adverse Short) (Sheet 2 of 3)

2

IS C-2299 CONNECTED?

YES

4

SH 3

NO

BAD MT-1029

SEE NOTE 5

3

UNPLUG ADDITIONAL AUDIO ACCESSORY FROM SPKR JACK. CHECK RT.

RT UNKEYS?

YES

BAD ADDITIONAL AUDIO ACCESSORY

SEE NOTE 2

NO

1

SH 1
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 6
Troubleshoot RT Keying Circuit (Adverse Short) (Sheet 3 of 3)

4

UNPLUG APPROPRIATE CX-4723 FROM C.2299 (NOTE 4). READ METER.
SEE NOTE 3

∞ Ω ?

YES
BAD C.2299
SEE NOTE 2

NO

UNPLUG CX-4723 FROM SUSPECT MT-1029, J22. READ METER.
SEE NOTE 3

∞ Ω ?

YES
BAD CX-4723
SEE NOTE 2

NO
BAD MT-1029
SEE NOTE 5
3-12. TROUBLESHOOTING FLOWCHARTS. (CONT)

CHART 7
Troubleshoot RT-246/C-2742 Remote Power Control Circuit (adverse short) (Sheet 1 of 1)

NOTES

1. This chart is used to troubleshoot the RT-246 remote power control circuit when radio set includes a C-2742. Refer to FO-4 in back of this manual.

2. Fix or replace and return to operational check at this time.
NOTES

1. This chart is used to troubleshoot the RT-246/TC-2742 power control circuit. Refer to FO-4 in back of this manual.

2. Fix or replace and return to operational checkText at this time.

3. In this step either cable (CX-7059 or CX-4723) could be the suspect bad cable. The resistance is checked from one cable plug to the other.
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 8
Troubleshoot RT-246/C-2742 Power Control (Adverse Open) (Sheet 2 of 3)

1. AT SUSPECT C-2742, J72, PIN M, MEASURE VOLTAGE

 20 TO 30 VDC ?
 YES
 BAD C-2742
 (CHECK LAMP)
 SEE NOTE 2

 NO
 UNPLUG CABLE CX-7059
 (CX-4723) FROM SUSPECT
 C-2742, J71. FROM J71, PIN
 M TO J72, PIN M, MEASURE
 RESISTANCE.

 ∞ Ω ?
 YES
 BAD C-2742
 SEE NOTE 2

 NO
 UNPLUG SUSPECT CABLE
 CX-7059 FROM RT REMOTE
 JACK, OR UNPLUG SUSPECT
 CABLE CX-4723 FROM PRI-
 MARY C-2742, J72
 SEE NOTE 3

 FROM PIN M TO PIN M OF
 THE SUSPECT CABLE
 (COULD BE EITHER CX-7059
 OR CX-4723), MEASURE
 RESISTANCE.

2 SH 3
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 8
Troubleshoot RT-246/C-2742 Power Control (Adverse Open) (Sheet 3 of 3)

![Flowchart]

- **YES**
 - BAD RT
 - SEE NOTE 2

- **NO**
 - 0 Ω ?
 - YES
 - SUSPECT CABLE A CX-7059 ?
 - YES
 - BAD RT
 - SEE NOTE 2
 - NO
 - BAD PRIMARY C-2742
 - SEE NOTE 2
 - NO
 - BAD CABLE (CX-7059 OR CX-4723)
 - SEE NOTE 2

SEE NOTE 2
3-38 Change 2
3-12. TROUBLESHOOTING FLOWCHARTS. (CONT)

CHART 9
Troubleshoot C-2742 Hi/Lo Power Control (Sheet 2 of 2)

1. **0 Ω?**
 - **YES**
 - **IS SUSPECT CABLE A CX-7059?**
 - **YES**
 - BAD RT
 - SEE NOTE 2
 - **NO**
 - BAD PRIMARY C-2742
 - SEE NOTE 2
 - **NO**
 - BAD SUSPECT CABLE
 - SEE NOTE 2
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 10
Troubleshoot Remote (C-2742) Frequency Selection (Wrong Selection) (Sheet 1 of 3)

NOTES

1. This chart is used to troubleshoot the remote frequency selection circuit. Refer to Figure E-1 in back of this manual.

2. For the CHAN SEL position selected, the P71, J72 pin indicated should have a 20 to 30 VDC reading. All other channel pins should show zero (0) volts. See table below.

<table>
<thead>
<tr>
<th>CHANNEL</th>
<th>P71, J72 PIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
</tr>
<tr>
<td>7</td>
<td>H</td>
</tr>
<tr>
<td>8</td>
<td>J</td>
</tr>
<tr>
<td>9</td>
<td>K</td>
</tr>
<tr>
<td>10</td>
<td>L</td>
</tr>
</tbody>
</table>

3. For the channel button pressed, the REMOTE jack pin indicated should be 20 to 30 VDC reading. All other channel pins should show zero (0) volts. See table below.

<table>
<thead>
<tr>
<th>CHANNEL</th>
<th>REMOTE jack, pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
</tr>
<tr>
<td>7</td>
<td>H</td>
</tr>
<tr>
<td>8</td>
<td>J</td>
</tr>
<tr>
<td>9</td>
<td>K</td>
</tr>
<tr>
<td>10</td>
<td>L</td>
</tr>
</tbody>
</table>

4. Fix or replace and return to operational check at this time.
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 10
Troubleshoot Remote (C-2742) Frequency selection (Wrong Selection) (Sheet 2 of 3)

1

CORRECT 20 TO 30 VDC FOR PIN SELECTED ONLY

YES

BAD CX-7059
SEE NOTE 4

NO

BAD RT
SEE NOTE 4

2

SET PRIMARY C-2742 CHANNEL SWITCH TO BAD CHANNEL, PRESS AND RELEASE S73 SW SWITCH. AT CX-4723 PLUG, P71 PINS (NOTE 2). MEASURE VOLTAGE.

CORRECT 20 TO 30 VDC FOR PIN SELECTED ONLY

YES

BAD TANDEM C-2742
SEE NOTE 4

NO

UNPLUG CX-4723 FROM PRIMARY C-2742, J72. AT VACATED JACK PINS (NOTE 2). MEASURE VOLTAGE.

3 SH 3

Change 2 3-41
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 10
Troubleshoot Remote (C-2742) Frequency Selection (Wrong Selection) (Sheet 3 of 3)

3

CORRECT 20 TO 30 VDC FOR PIN SELECTED ONLY

YES

BAD CX-4723
SEE NOTE 4

NO

BAD PRIMARY C-2742
SEE NOTE 4
NOTES

1. This chart is used to troubleshoot the remote frequency selection circuit. Refer to F0-4 in back of this manual.

2. For the CHAN SEL position selected, the P71, J72 pin indicated should have a 20 to 30 VDC reading. All other channel pins should show zero (0) volts. See table below.

<table>
<thead>
<tr>
<th>CHANNEL</th>
<th>P71, J72 PIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
</tr>
<tr>
<td>7</td>
<td>H</td>
</tr>
<tr>
<td>8</td>
<td>J</td>
</tr>
<tr>
<td>9</td>
<td>K</td>
</tr>
<tr>
<td>10</td>
<td>L</td>
</tr>
</tbody>
</table>

3. For the channel button pressed, the REMOTE jack pin indicated should be 20 to 30 VDC reading. All other channel pins should show zero (0) volts. See table below.

<table>
<thead>
<tr>
<th>CHANNEL</th>
<th>REMOTE jack, pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
</tr>
<tr>
<td>7</td>
<td>H</td>
</tr>
<tr>
<td>8</td>
<td>J</td>
</tr>
<tr>
<td>9</td>
<td>K</td>
</tr>
<tr>
<td>10</td>
<td>L</td>
</tr>
</tbody>
</table>

Fix or replace and return to operational check at this time.
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 11
Troubleshoot Remote (C-2742) Frequency Selection (No Selection) (Sheet 2 of 3)

1

CORRECT 20 TO 30 VDC FOR PIN SELECTED?

- YES: BAD CX-7059
- NO: BAD RT

2

- SET PRIMARY C-2742 CHANNEL SELECT SWITCH TO BAD CHANNEL, PRESS AND RELEASE S73, SW SWITCH, AT CX-4723 PLUG, P71, PIN S (NOTE 2), MEASURE VOLTAGE.

CORRECT 20 TO 30 VDC FOR PIN SELECTED?

- YES: BAD TANDEM C-2742
- NO: UNPLUG CX-4723 FROM PRIMARY C-2742, J72, AT J72, PIN S (NOTE 2), MEASURE VOLTAGE.

3

SH 3
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 11
Troubleshoot Remote (C-2742) Frequency Selection (No Selection) (Sheet 3 of 3)

3

CORRECT 20 TO 30 VDC FOR PIN SELECTED?

YES

BAD CX-4723
SEE NOTE 4

NO

BAD PRIMARY C-2742
SEE NOTE 4
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 12
Troubleshoot Fwd to RVS Power Ratio (Sheet 1 of 1)

NOTES

1. This chart is used to troubleshoot the forward to reverse power ratio of the antenna circuit.

2. Fix or replace and return to Operational check at this time.

3. Disconnect cables CG-409 and CG-1773/U from test setup. Move Test Set from RT to base of antenna. Reconnect cables as shown below.
 a. Test Set AN/PRM-34
 CG-409: Connect between Test Set ANT Jack and Matching Unit J2
 CG-1773/U: Connect between Test Set RADIO Jack of RT ANT Jack
 b. Test Set AN/URM-182
 CG-409: Connect between J4 on TS-2609 and Matching Unit J1
 CG-1773/U: Connect between J3 on TS-2609 and RT ANT Jack.

RVS POWER IS GREATER THAN 1/3 OF FWD POWER

SEE NOTE 1

ON ALL 10 BANDS?

NO
BAD ANTENNA SYSTEM

SEE NOTE 2

YES

RECONNECT AN/URM-182 OR AN/PRM-34 AS SHOWN IN NOTE 3. REPEAT OPERATIONAL CHECK Step 13 OR 14 AS APPLICABLE.
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 13
Troubleshoot C-2299 Monitor Circuit (Sheet 1 of 2)

NOTES

1. This chart is used to troubleshoot either the A-RT (operational check step 18) or C-RT (operational check step 21) C-2299 monitoring circuit. Refer to FO-3 in back of this manual.

2. Fix or replace and return to operational check at this time.

3. To circuit disturb, set up multimeter as an ohmmeter, RX10.

4. For adverse A-RT, unplug CX-4723 from J701; for adverse C-RT, unplug CX-4723 from J702.

3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 13
Troubleshoot C-2299 Monitor Circuit (Sheet 2 of 2)

2. Is it 0 Ω?
 - Yes → Bad CX-4723
 - See Note 2
 - No → Bad MT-1029
 - See Note 5
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 14
Troubleshoot C-2299 Keying Circuit (adverse open) (Sheet 1 of 2)

NOTES
1. This chart is used to troubleshoot either the A-RT (operational check step 19) or C-RT (operational check step 22) C-2299 keying circuit. Refer to F0-3 in back of this manual.

2. Fix or repair and return to operational check at this time.

3. For adverse A-RT, unplug CX-4723 from J701; for adverse C-RT, unplug CX-4723 from J702.

NO RT KEYING

SEE NOTE 1

TURN C-2299 RAD TRANS SWITCH TO ADVERSE POSITION (1 OR 2). TURN ADVERSE RT PWR OFF AND REMOVE IT FROM ITS MT-1029.

AT VACATED J-24, PIN H TO PIN A. MEASURE RESISTANCE WHILE KEYING AND UNKEYING C-2299's MICROPHONE SEVERAL TIMES

IS < 50 Ω KEYED AND ≥ 50 Ω UNKEYED?

YES

BAD RT

SEE NOTE 2

NO

UNPLUG SUSPECT CX-4723 FROM C-2299 JACK (NOTE 3). AT VACATED JACK (J701 OR J702), PIN S TO PIN A. MEASURE RESISTANCE WHILE KEYING AND UNKEYING MICROPHONE SEVERAL TIMES.

1 SH 2
CHART 14
Troubleshoot C-2299 Keying Circuit (adverse open) (Sheet 2 of 2)

1. **IS \(< 50 \Omega\) KEYED AND \(\infty \Omega\) UNKEYED?**
 - **YES**
 - UNPLUG SUSPECT CX-4723 FROM MT-1029, J22. FROM VACATED J22, PIN S TO J24, PIN H, MEASURE RESISTANCE.
 - BAD C-2299
 - SEE NOTE 2
 - **NO**

2. **\(0 \Omega\) ?**
 - **YES**
 - BAD CX-4723
 - SEE NOTE 2
 - **NO**
 - BAD M1-1029
 - SEE NOTE 4
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 15
Troubleshoot C-2299 RT Modulation Circuit (Sheet 1 of 4)

NOTES

1. This chart is used to troubleshoot either the A-RT (operational check step 20) or C-RT (operational check step 23) modulation circuit. Refer to **FO-3** in back of this manual.

2. Fix or replete and return to operational check at this time.

3. To measure AC talk signal, set up the multimeter as an AC voltmeter (lowest range), and then connect the meter probe across the signal lines (J24, pin N to pin A). Key the mike and note reading. Next, sharply whistle into keyed mike and watch to see if the meter reading changes. A change of the reading (up or down) indicates the presence of the talk signal.

4. Leave the meter connected for further tests.

CAUTION
To guard against equipment damage while placing jumper J24, make sure that only the correct pins are connected. (See figure below.)

5. For adverse A-RT, use P701; for adverse C-RT use P702.

3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 15
Troubleshoot C-2299 RT Modulation Circuit (Sheet 2 of 4)

1.

20 TO 30 VDC?

2 SH 2

NO

2.

Q Ω?

BAD CX-4723

SEE NOTE 2

NO

BAD MT-1029

SEE NOTE 6

3.

∞ Ω?

UNPLUG SUSPECT CX-4723 FROM MT-1029, J-22, REPEAT ABOVE TEST.

4 SH 3

5 SH 5

6 SH 4

AS APPROPRIATE, TURN A-RT OFF OR AT A-RT MT-1029, REMOVE JUMPER FROM J-24, AT SUSPECT MT-1029, J-24, PIN N TO PIN A, MEASURE RESISTANCE, SEE NOTE 4
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 15
Troubleshoot C-2299 RT Modulation Circuit (Sheet 3 of 4)

1. TURN A-RT PWR SWITCH TO LOW. AT C-RT MT-1029, J24, PIN N TO PIN A, MEASURE AC (NOTE 3). WHISTLE INTO C-2299'S KEYED MICROPHONE.

2. AC?
 YES
 BAD C-RT
 SEE NOTE 2
 NO

3. SH 2

4. UNPLUG CX-4723 FROM C-2299, J702.

5. AT SUSPECT CX-4723 OPEN PLUG, P701 OR P702 (NOTE 5), SHORT PIN U TO PIN A. READ METER.
 YES
 BAD C-2299
 SEE NOTE 2
 NO
 SH 4

.Change 2

3-53
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 15
Troubleshoot C-2299 RT Modulation Circuit (Sheet 4 of 4)

5

UNPLUG SUSPECT CX-4723 FROM MT-1029, J22. FROM J22, PIN U TO J24, PIN N, MEASURE RESISTANCE.

0 \(\Omega\) ?

YES

BAD CX-4723
SEE NOTE 2

NO

BAD MT-1029
SEE NOTE 6

6

\(\infty \Omega\) ?

YES

BAD CX-4723
SEE NOTE 2

NO

BAD MT-1029
SEE NOTE 6
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 16
Troubleshoot RT Retransmit Keying Circuit (Adverse Short) (Sheet 1 of 3)

NOTES

1. This chart is used to troubleshoot either the A-RT or C-RT retransmit keying circuit for continuous keying. Refer to FO-3 in back of this manual.

2. Fix or replace and return to operational check at this time.

3. Mark each RT according to its position (e.g., with grease pencil, write on RT which it is: A-RT or C-RT).

4. Keep multimeter connected until bad item is found.

3.12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 16
Troubleshoot RT Retransmit Keying Circuit (Adverse Short) (Sheet 2 of 3)

1

UNPLUG CX-4723 FROM A-RT MT-1029, J22.
READ METER.
SEE NOTE 4

∞Ω

YES

BAD A-RT CX-4723
SEE NOTE 2

NO

BAD A-RT MT-1029
SEE NOTE 5

2

AT C-RT MT-1029, J24, PIN T TO PIN A, MEASURE RESISTANCE
SEE NOTE 4

∞Ω

YES

BAD C-RT
SEE NOTE 2

NO

3

SH 3
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 16
Troubleshoot RT Retransmit Keying Circuit (Adverse Short) (Sheet 3 of 3)

1. UNPLUG CX-4723 FROM C-2299, J702.
 READ METER.
 SEE NOTE 4

2. \(\infty \Omega\) ?
 YES
 BAD C-2299
 SEE NOTE 2
 NO

3. UNPLUG CX-4723 FROM C-RT MT-1029, J22.
 READ METER.
 SEE NOTE 4

4. \(\infty \Omega\) ?
 YES
 BAD C-RT CX-4723
 SEE NOTE 5
 NO

 BAD C-RT MT-1029
 SEE NOTE 2
CHART 17
Troubleshoot RT Retransmit Keying Circuit (Adverse Open) (Sheet 1 of 2)

NOTES

1. This chart is used to troubleshoot either A-RT or C-RT retransmit keying circuit. Refer to [P6-3] in back of this manual.

2. Fix or replace and return to operational check at this time.

3. For operational check step 24b remove C-RT; for operational check step 24c remove A-RT.

4. Leave ohmmeter connected during test.

5. For operational check step 24b, unplug P701 end use J701. For operational check step 24c, unplug P702 and use J702.

6. For operational check step 24b, use plug P702; for operational check step 24c, use plug P701.

3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 17
Troubleshoot RT Retransmit Keying Circuit (Adverse Open) (Sheet 2 of 2)

1

UNPLUG CX-4723 FROM SUSPECT MT-1029, J22 (NOTE 3). FROM VACATED J22, PIN T TO J24, PIN T, MEASURE RESISTANCE.

O Ω ?

YES

BAD CX-4723
SEE NOTE 2

NO

BAD MT-1029
SEE NOTE 7
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 18
Troubleshoot Retransmit Modulation Circuit (Sheet 1 of 3)

NOTES
1. This chart is used to troubleshoot either the A-RT (operational check step 24b) or the C-RT (operational check step 24c) retransmit modulation circuit. Refer to [FO-3] in back of this manual.

2. Fix or replace and return to operational check at this time.

3. For operational check step 24b, unplug CX-4723 from J702 and use plug P702. For operational check step 24c, unplug CX-4723 from J701 and use plug P701.

4. To measure AC, set up multimeter as AC voltmeter on its lowest range (TS-352, 2.5 VAC), then connect to plug (note 3) between pin K and pin A.

5. For step 24b, remove C-RT; for step 24c, remove A-RT.

3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 18
Troubleshoot Retransmit Modulation Circuit (Sheet 2 of 3)

1

∞Ω

YES

BAD CX-4723
SEE NOTE 2

NO

BAD MT-1029
SEE NOTE 7

2

AT CX-4723 OPEN PLUG
(NOTE 3), SHORT PIN K TO
PIN A. READ METER.
SEE NOTE 6

0Ω

YES

BAD RT
SEE NOTE 2

NO

UNPLUG SUSPECT CX-4723
FROM MT-1029, J22,
FROM VACATED J22,
PIN K TO J24, PIN K,
MEASURE RESISTANCE.

3

SH 3
3.12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 18
Troubleshoot Retransmit Modulation Circuit (Sheet 3 of 3)

3

0 Ω?

YES
BAD CX-4723
SEE NOTE 2

NO
BAD C-2299
SEE NOTE 2
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 19
Troubleshoot Remote Power Control (Sheet 1 of 3)

NOTES

1. Refer to [FO-1] and 2 in back of this manual.

2. Fix or replace and return to operational check at this time.

Diagram

- **ADDITIONAL RADIO(S) COMPONENT(S) DIAL LAMP(S) COME ON**
 - See Note 1
- **TURN A-RT POWER OFF, THEN REMOVE IT FROM ITS MT-1029. CHECK OTHER RADIOS.**
- **DO OTHER RADIOS STAY ON?**
 - **YES**
 - **TURN ADVERSE RADIO(S) POWER TO OFF AND REMOVE FROM MOUNT(S). REMOVE J-BOX COVER AND CHECK LINK POSITION.**
 - **LINK POSITION OK?**
 - **YES**
 - 1 SH 2
 - **NO**
 - **RESET LINK**
 - **NO**
 - **BAD A-RT**
 - See Note 2
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 19
Troubleshoot Remote Power Control (Sheet 2 of 3)

1. IS ADVERSE RADIO C-RT?
 NO
 UNPLUG CX-4721 FROM B-RECEIVER MT-1898, J11, FROM J11, PIN B TO J14, PIN C, MEASURE RESISTANCE.

 YES
 \[\infty \Omega \]
 NO
 BAD C-RT MT-1029
 SEE NOTE 4

 \[\infty \Omega \]
 NO
 UNPLUG CX-4721 FROM A-RT MT-1029, AT J23, PIN C (POS) TO PIN A (NEG), MEASURE VOLTAGE.

 YES
 2 SH 3

 NO
 IS C-RECEIVER (R-442) CONNECTED?
 NO
 BAD B-RECEIVER MT-1898
 SEE NOTE 3

 YES
 UNPLUG C-RT CX-4721 FROM B-RECEIVER MT-1898, J11, FROM J11, PIN B TO J14, PIN C, MEASURE RESISTANCE.

 \[\infty \Omega \]
 NO
 3 SH 3
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 19
Troubleshoot Remote Power Control (Sheet 3 of 3)

2

20 TO 30 VDC ?

YES

BAD A-RT
MT-1029
SEE NOTE 4

NO

BAD CX-4721
SEE NOTE 2

3

REMOVE C-RECEIVER FROM MT-1898. UNPLUG CX-4721 FROM J11. FROM J11, PIN B TO J14, PIN C, MEASURE RESISTANCE.

YES

BAD C-RECEIVER CX-4721
SEE NOTE 2

NO

BAD C-RECEIVER MT-1898
SEE NOTE 3
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 20
Troubleshoott Remote Power Control (Sheet 1 of 4)

NOTES
1. Refer to FO-1 and 2 in back of this manual.
2. Fix or replace and return to operational check at this time.
3. When both B-receiver (R-442) and C-receiver (R-442) are adverse, check B-receiver first.
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 20
Troubleshoot Remote Power Control (Sheet 2 of 4)

1. AT C-RT MT-1029, J24, PIN A (NEG) TO PIN J (POS), THEN PIN B (POS), MEASURE VOLTAGE.

 BOTH 20 TO 30 VDC?

 YES → BAD C-RT
 SEE NOTE 2

 NO → UNPLUG CX-4721 FROM SUSPECT MOUNT C-RT. MT-1029 OR B-RECEIVER MT-1898. AT CX-4721 PLUG, P21 OR P11, PIN A (NEG) TO PIN B (POS), THEN PIN C (POS), MEASURE VOLTAGE.

 BOTH 20 TO 30 VDC?

 YES → BAD C-RT MT-1029 OR B-RECEIVER MT-1898.
 SEE NOTES 4 AND 5

 NO → TURN A-RT PWR OFF, REMOVE FROM MT-1029, UNPLUG CX-4721 FROM A-RT MT-1029. AT CX-4721 PLUGS, PIN B TO PIN B, THEN PIN C TO PIN C, MEASURE RESISTANCE.

2. SH 3
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 20
Troubleshoot Remote Power Control (Sheet 3 of 4)

2

BOTH 0 Ω ?

YES

FROM A-RT, J24, PIN C TO J23, PIN C, MEASURE RESISTANCE

NO

BAD CX-4721
SEE NOTE 2

0 Ω ?

YES

BAD A-RT
SEE NOTE 2

NO

BAD A-RT
MT-1029
SEE NOTE 5

3-68 Change 2
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 20
Troubleshoot Remote Power Control (Sheet 4 of 4)

3

IS B-RECEIVER ADVERSE?

3-69
NOTES

1. Refer to FO-2 in back of this manual.

2. Fix or replace and return to operational check at this time.

CAUTION

Ensure all antenna cables are connected.

3. Disconnect cables CG-409 and CG-1773/U from test setup. Move Test Set from RT to base of antenna. Reconnect cables as shown below.

3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 21
Troubleshoot Auxiliary Receivers Antenna Circuit (Sheet 2 of 2)

1. LOOSEN GROUNDING CLAMP AND UNPLUG ADAPTER UG-273. THEN REMOVE LOWER ANTENNA ELEMENT FROM BASE. FROM CENTER CONTACT OF BASE'S SPRING ASSEMBLY TO INNER PIN OF VACATED LOWER JACK, MEASURE RESISTANCE.

2. LOOSEN GROUNDING CLAMP AND UNPLUG ADAPTER UG-273 FROM BASE. FROM OUTER COLLAR TO INNER PIN OF UG-273, MEASURE RESISTANCE.

3. UG-308 (OPTIONAL) OR UG-273 IS BAD

4. ANTENNA BASE IS BAD

5. SEE NOTE 2

6. SEE NOTE 2

7. 0 Ω

8. ≠ Ω

9. 0 Ω

10. ≠ Ω

11. NO

12. YES

13. YES

14. NO

15. NO

16. YES

17. NO

18. NO
NOTES

1. This chart is used to troubleshoot either the B or C-442's earphone circuit. Refer to FO-2 in back of this manual.

2. Fix or replace end return to operational check at this time.

3. Make sure that audio plug and jack contacts are clean and a serviceable O-ring is correctly installed in the plug.

4. Set up multimeter as an ohmmeter to circuit disturb, RX10.

3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 22
Troubleleshoot R-442's Earphone Audio Circuit (Sheet 2 of 2)

2

UNPLUG ADDITIONAL ACCESSORY FROM R-442. REPEAT OPERATIONAL CHECK STEP 27.

STEP 27 OK?

YES

BAD ADDITIONAL AUDIO ACCESSORY
SEE NOTE 2

NO

1 SH 1
NOTES
1. This chart is used to troubleshoot either the B or C R-442's speaker circuit. Refer to FO-2 in back of this manual.
2. Fix or replace and return to operational check at this time.
3. Make sure that audio plug and jack contacts are clean and a serviceable O-ring is correctly installed in the plug.
5. Set up multimeter as an ohmmeter to circuit disturb, RX10.
CHART 23
Troubleshoot R-442’s Speaker Audio Circuit (Sheet 2 of 2)

2

UNPLUG ADDITIONAL AUDIO ACCESSORY FROM R-442. REPEAT OPERATIONAL CHECK STEP 27.

STEP 27 OK?

YES BAD ADDITIONAL AUDIO ACCESSORY

NO 1 SH 1

SEE NOTE 2
3-12. TROUBLESHOOTING FLOWCHARTS. (CONT)

CHART 24

Troubleshoot A-RT’s Auxiliary Receiver Speaker Muting Circuit (Sheet 1 of 7)

NOTES

1. Refer to FIG-2 in back of this manual.

2. Fix or replace and return to operational check at this time.

3. When there are both a B- and C-receiver (AN/VRC-44 and -48), connect multimeter set "up for OHMS, R X 1K) to J14 of the C-receivers mount as prescribed by note 4.

4. Because of CR21 in A-RT’s mount positive (+) meter probe is connected to J14 pin D and negative (-) meter probe to J14 pin A. For a TS-352, "ohms" probe is negative (-) and "common" probe is positive (+).

5. Inside adverse mounts J-box check wiring from J24 (MT-1029) or J14 (MT-1898) pin D to J21 and J23 (MT-1029) or J11 and J13 (MT-1898) pin D for adverse shorts. Afterwards see note 2.

6. When both the B- and C-receivers won’t mute, check the B-receiver first. Connect multimeter (set up for OHMS, R X 1K) to J14 of adverse receiver’s mount as prescribed by note 4.

7. Inside adverse mounts’ J-box, check wiring from J24 (MT-1029) or J14 (MT-1898) pin D to J23 (MT-1029) or J11 and J13 (MT-1898) pin D for adverse opens. Afterwards see note 2.
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 24
Troubleshoot A-RT's Auxiliary Receiver Speaker Muting Circuit (Sheet 2 of 7)

2

∞Ω?

YES

SUSPECT RADIO COMPONENT IS BAD
SEE NOTE 2

NO

MORE RADIO COMPONENTS TO BE REMOVED?

YES

1 SH 1

NO

UNPLUG CX-4721 FROM A-RT'S MT-1029 J23. REPEAT TEST.

∞Ω?

YES

BAD A-RT MT-1029
SEE NOTE 5

NO

3 SH 3
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 24
Troubleshoot A-RT's Auxiliary Receiver Speaker Muting Circuit (Sheet 3 of 7)

3

UNPLUG CX-4721 FROM B-RECEIVER'S MT-1898 J11. REPEAT TEST.

∞ Ω ?

YES

BAD CX-4721
(MT-1029 TO MT-1898)

SEE NOTE 2

NO

IS THERE A C-RECEIVER ?

YES

UNPLUG CX-4721 FROM B-RECEIVER'S MT-1898 J13. REPEAT TEST.

BAD B-RECEIVER
MT-1898

SEE NOTE 5

∞ Ω ?

YES

NO

4 SH 4
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 24
Troubleshoot A-RT's Auxiliary Receiver Speaker Muting Circuit (Sheet 4 of 7)

4

UNPLUG CX-4721 FROM C-RECEIVER'S MT-1898 J11. REPEAT TEST.

\[\infty \Omega \]

\begin{cases}
\text{YES} & \text{BAD CX-4721 (MT-1898 TO MT-1898)} \\
\text{NO} & \text{BAD C-RECEIVER'S MT-1898}
\end{cases}

\text{SEE NOTE 2}

5

SET ADVERSE RECEIVER'S POWER SWITCH AT OFF. REMOVE IT FROM ITS MT-1898. AT J14, PIN A TO PIN D, CONNECT AN OHM-METER (SEE NOTES 3 AND 6). NEXT, KEY AND UNKEY A-RT SEVERAL TIMES. READ METER.

6

SH 5

\text{SEE NOTE 5}
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 24
Troubleshoot A-RT's Auxiliary Receiver Speaker Muting Circuit (Sheet 5 of 7)

6

< 100 Ω WHEN KEYED?

- YES
 - SUSPECT AUXILIARY RECEIVER IS BAD
 - SEE NOTE 2

- NO
 - UNPLUG CX-4721 FROM SUSPECT RECEIVERS MT-1898, J11. AT CX-4721 PLUG P11 PIN D (+) TO PIN A (-). REPEAT TEST.

< 100 Ω WHEN KEYED?

- YES
 - SUSPECT RECEIVER'S MT-1898 IS BAD
 - SEE NOTE 7

- NO
 - IS B-RECEIVER ADVERSE?

- YES
 - 7
 - SH 6

- NO
 - UNPLUG CX-4721 FROM B-RECEIVER'S MT-1898, J13. FROM B-RECEIVER'S MT-1898 J13 PIN D TO ITS J11 PIN D, MEASURE RESISTANCE.

8
 - SH 7
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 24
Troubleshoot A-RT's Auxiliary Receiver Speaker Muting Circuit (Sheet 6 of 7)

1. TURN A-RT POWER SWITCH TO OFF. REMOVE A-RT FROM ITS MT-1029. FROM CX-4721 PLUG P11 PIN D (+) TO MT-1029 J24 PIN D (−), MEASURE RESISTANCE.

2. <100 Ω ?
 - YES → BAD A-RT
 SEE NOTE 2
 - NO → UNPLUG CX-4721 FROM MT-1029 J23, FROM J23 PIN D (+) TO J24 PIN D (−) MEASURE RESISTANCE.

3. <100 Ω ?
 - YES → BAD CX-4721 (MT-1029 TO MT-1898)
 SEE NOTE 2
 - NO → BAD A-RT MT-1029
 SEE NOTE 7
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 24
Troubleshoot A-RT's Auxiliary Receiver Speaker Muting Circuit (Sheet 7 of 7)

8

0 Ω ?

BAD CX-4721 (MT-1898 TO MT-1898)
SEE NOTE 2

BAD B RECEIVER'S
MT-1898
SEE NOTE 7

NO

YES
1. This chart is used to troubleshoot either the A-RT or C-RT voice modulation circuit. Refer to FO-1 in back of this manual.
2. Fix or replace and return to operational check at this time.
3. Make sure that audio plug and jack contacts are clean and a serviceable O-ring is correctly installed in the plug.
4. To circuit disturb a microphone, connect ohmmeter leads to audio plug, pin O to pin A. Next press and release P-T-T switch while listening to the microphone element.
3-12. TROUBLESHOOTING FLOW CHARTS. (CONT)

CHART 25
Troubleshoot RT Voice Modulation Circuit (Sheet 2 of 2)

2

UNPLUG ADDITIONAL AUDIO ACCESSORY FROM RT. REPEAT OPERATIONAL CHECK STEP 17.

STEP 17 OK?

YES

BAD ADDITIONAL ACCESSORY
SEE NOTE 2

NO

1 SH 1
Section IV MAINTENANCE PROCEDURES

Subject Para Page

Operational Check ... 3-13 3-87
Procedure Using Test Set AN/PRM-34 .. 3-14 3-89
Procedure Using Test Set AN/URM.182 .. 3-15 3-115

Maintenance
RT-246/VRC and RT-524/VRC ... 3-16 3-141
R.442/VRC .. 3-17 3-149

Antennas .. 3-18 3-153

RT Antennas
AS-1729/VRC .. 3-18 3-154
AT-912/VRC .. 3-18 3-156

Auxiliary Receiver Antennas
AB.15/GR ... 3-18 3-159
AB-558/GR .. 3-18 3-159
MT-1029/VRC and MT.1898/VRC .. 3-19 3-160
Radio Relay Box C-2299/VRC ... 3-20 3-164
Remote Control Box C-2742 .. 3-21 3-166
Cables .. 3-22 3-168

OVERVIEW

This section contains organizational maintenance procedures for the items of equipment that make the AN/VRC-12 series radio sets installed in wheeled vehicles.

An Operational Check is used to see if the equipment is operating properly. Faults or malfunctions found during the Operational Check indicate what troubleshooting should be done to locate a faulty item of equipment.

Maintenance procedures are provided to fix or replace items of the radio set at the organizational maintenance level using authorized maintenance tools, equipment and repair parts. Refer to appendix B, Maintenance Allocation Chart.

3-13. OPERATIONAL CHECK.

GENERAL

The Operational Check (Op Check) provides a step-by-step procedure for evaluating any one of the eight AN/VRC-12 series radio sets installed in military, wheeled vehicles. It specifies the procedure to be used to check the operational state of the radio set’s items of equipment. It includes tests for the RT’s, each RT antenna and auxiliary components (C-2299 and C-2742), the auxiliary receivers, the receivers’ antenna, and the radio components’ mounts. The Op Check is normally done with the equipment installed in the vehicle.
3-13. OPERATIONAL CHECK. (CONT)

As a minimum, the Op Check is done as part of the scheduled preventive maintenance checks and services (PMCS) for the vehicle's radio set. At the discretion of the C-E equipment maintenance supervisor, the Op Check could be done more often than the scheduled PMCS. After every repair of an item of equipment, the portion of the Op Check that applies to that item of equipment should be done again to insure that the malfunction has been corrected and that no other malfunctions exist.

NOTE

To insure valid evacuation results for the components of the radio set being checked, the Op Check must be followed exactly as written.

The Op Check first lists certain preparatory actions that, when done, establish a starting condition for the equipment performance checklist that follows.

The equipment performance checklist portion is divided into blocks (A, B, C, etc.) and each block contains Op Check steps that, when done, test a specific circuit, or a set of closely related circuits, within a major component or within two or more components connected and working together.

Overall, and within each block, the Op Check steps are numerically sequenced (1,2,3, etc.) and these step numbers should be referenced when completing columns a and c of a reporting worksheet, DA Form 2404.

Each step is subtitled, according to the specific functions being checked, and each column lists the actions to be done and the expected normal indications.

When normal indications are observed for a specific step, proceed to the next step or follow the How to Proceed instructions below that step. When normal indications are observed for all steps within a block, follow the How to Proceed instructions at the end of that block.

When abnormal indications are observed for a specific step, that step will either state the faulty item of equipment or reference a troubleshooting chart by number. These charts are included in section III of this chapter.

Each troubleshooting chart provides a step-by-step troubleshooting method (including t/s techniques and a procedure) that when followed will identify the faulty item of equipment.

Throughout the Op Check are cautions, warnings, and setups that must be observed or done for equipment and personal safety, as well as an accurate evaluation of all of the radio set's functions.
3-13. OPERATIONAL CHECK. (CONT)

Based on which test set is available (AN/PRM-34 or AN/URM-182), two versions of the Op Check procedure are provided.

1. When Test Set AN/PRM-34 is available, use the procedure of paragraph 3-14 below.
2. When Test Set AN/URM-182 is available, use the procedure of paragraph 3-15, starting on page 3-115.

3-14. PROCEDURE USING TEST SET AN/PRM-34.

The AN/PRM-34 test set must be used to complete this procedure. Cabling instructions and test set switch settings for the AN/PRM-34 will be given as they apply throughout the procedure.

INITIAL ADJUSTMENTS

WARNING

To safeguard against electrical shock and possible damage to equipment, remove or tape all personal exposed metal objects (e.g., watches, rings and medallions).

To prevent personnel injury and damage to the equipment, turn all communication component POWER switches to OFF. Depending on the type of vehicle and its actual radio set, turn to OFF the following:

NOTE

Refer to illustration of typical installation on page 2-6

1. Switch box assembly (if included, in cab compartment)
2. RT unit (RT-524/RT-246) POWER switches
3. R-442 POWER switches
4. C-2742 PWR SW (power switch) switches.

CAUTION

Do not start vehicle engine with radio set turned on. Make certain that all components that have POWER switches are turned to OFF. Starting a vehicle engine with the radio components turned to ON can cause serious damage to the components.

INSTALLATION CHECKS

Refer to chapter 1, section II of this manual or an appropriate 2300 series TM to insure that all items of equipment of the radio set are properly installed and that all cables are properly routed and connected.

NOTE

TM 11-5820-401-10-1-HR contains example hand receipts that, based on the actual vehicle and radio set configuration, can be used to inventory items of equipment and determine National stock numbers (NSN’S).
3-14. PROCEDURE USING TEST SET AN/PRM-34. (CONT)

PRESET CONTROLS

To establish a logical starting point for the evaluation procedure, the controls of the components of the radio set must be preset according to the following preparatory actions.

RECEIVER-TRANSMITTERS, RT-524/VRC AND RT-246/VRC

Set the controls of all Receiver-Transmitters as follows:

1. Turn BAND switch to 30-52 A.
2. Turn LIGHT switch to ON.
3. Turn SPEAKER switch to ON (RT-524 only).
4. Tune MC-TUNE-KC controls for 50.00 MHz.
5. Turn SQUELCH switch to OLD OFF.
6. Turn VOLUME control fully counterclockwise to no volume.

NOTE

Objectionable interference may result when RT is tuned to 33.90, 45.20, 56.50, and 67.80 MHz. Avoid tuning RT to these frequencies.

RECEIVERS R-442/VRC (WHEN INCLUDED)

Set the controls of all auxiliary receivers as follows:

1. Turn BAND switch to 30-52 A.
2. Turn LIGHT switch to ON.
3. Tune MC-TUNE-KC controls for 50.00 MHz.
4. Turn VOLUME control fully counterclockwise to no volume.
5. Turn SQUELCH switch to OLD OFF.

RETRANS BOX, C-2299/VRC (WHEN INCLUDED)

Set the controls of all RETRANS boxes as follows:

1. Turn RAD TRANS switch to 1.
2. Turn RETRANS switch to OFF.
3. Turn VOLUME control fully clockwise to maximum volume.

NOTE

The C-2299 retrans box, though used primarily for a retrans function of the AN/VRC-49 and -45, also can be used as a convenience box for the connection of audio accessories for the six AN/VRC-12 configurations.
3-14. PROCEEDURE USING TEST SET AN/PRM-34. (CONT)

C-2742/VRC REMOTE BOX AND C-2299/VRC RETRANS BOX

The C-2742/VRC remote box is sometimes mounted on top of the C-2299/VRC retrans box. The remote box enables the operator to control of the RT-246 dc input power, its transmit rf power level, and select preset channels of the RT-246/VRC from a remote (cab compartment) location.

In this case, the C-2299/VRC provides a remote connection for the RT-246 audio accessories, REMOTE BOX, C-2742/VRC (WHEN INCLUDED)

Unplug all CX-7059 cables from their RT-246 REMOTE jacks.

RT ANTENNA MATCHING UNITS MX-6707/VRC AND MX-2799/VRC

If possible, on MX-6707, manually turn the frequency range tuning switch to 47.5-53 MHz. (This setting corresponds with the RT frequency setting of 50 MHz.) The MX-2799 requires no presetting.
3-14. PROCEDURE USING TEST SET AN/PRM-34. (CONT)

AN/PRM-34 TEST SET CABLING

The AN/PRM-34 is a self-contained test set that is used to check specific functions of the radio set components (RT-524, RT-246 and R-442) and their antennas. For all radio sets being checked, first connect the test set to the A-RT and then, as directed later, connect it to the other radio components as illustrated below.

<table>
<thead>
<tr>
<th>FROM</th>
<th>TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>CABLE</td>
<td>ASSEMBLY</td>
</tr>
<tr>
<td>CG-409</td>
<td>AN/PRM-34</td>
</tr>
<tr>
<td>CG-T773/U (RT’s)</td>
<td>AN/PRM-34</td>
</tr>
<tr>
<td>CX-4722/VRC</td>
<td>A-RT</td>
</tr>
</tbody>
</table>
3-14. PROCEDURE USING TEST SET AN/PRM-34. (CONT)

AUXILIARY RECEIVER(S) ANTENNA CHECK

<table>
<thead>
<tr>
<th>CABLE</th>
<th>ASSEMBLY</th>
<th>JACK</th>
<th>CABLE PLUG</th>
<th>ASSEMBLY</th>
<th>JACK</th>
<th>CABLE PLUG</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG-1733 (R-442's)</td>
<td>AN/PRM-34</td>
<td>ANT</td>
<td>R-442 Antenna Base or AB-558</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG-409</td>
<td>AN/PRM-34</td>
<td>RADIO</td>
<td>A-RT</td>
<td></td>
<td></td>
<td>ANT</td>
</tr>
</tbody>
</table>

![Diagram of radio assembly]
3-14. PROCEDURE USING TEST SET AN/PRM-34. (CONT)

R-442/VRC, RECEIVER CHECKS

<table>
<thead>
<tr>
<th>FROM</th>
<th>TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>CABLE</td>
<td>ASSEMBLY</td>
</tr>
<tr>
<td>CG-409</td>
<td>Aux Rec</td>
</tr>
</tbody>
</table>

VERIFY OPERATION OF TEST SET AN/PRM-34

The AN/PRM-34 has a self-check feature that is used to verify its operation. Before using the AN/PRM-34 to test radio components, self-check it as follows.

CAUTION

To prevent possible damage to the AN/PRM-34, insure that the radio set is off before self-checking the test set. (Actions of initial Adjustments must be done first.)

1. Turn AN/PRM-34 MODE switch to OFF/CHECK.
2. Press down AN/PRM-34 PUSH TO TEST switch. The MHz lamp should light and display should be 01.000 or 1-000. Any other indications indicate a faulty AN/PRM-34 (possibly a bad battery).
3. Release PUSH TO TEST switch before going on.
3-14. PROCEDURE USING TEST SET AN/PRM-34. (CONT)

A. RT INPUT POWER, INITIAL RECEIVE, AND INITIAL MATCHING UNIT (MX) CONTROL CHECKS,

Do these checks for all RT’s. When radio set is an AN/VRC -45 or -49, first do these checks for the A-RT and then as directed later do them again for the C-RT.

<table>
<thead>
<tr>
<th>Step 1</th>
<th>INPUT POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTE</td>
<td>For this check, if matching unit was not initially preset, matching unit switching sound may be heard.</td>
</tr>
<tr>
<td>Turn RT POWER switch to LOW.</td>
<td>RT dial lamp should light. If lamp fails to light, refer to troubleshooting chart 1. If RT keys (blower runs and FWD PWR check indicates rf transmit power), refer to troubleshooting chart 6.</td>
</tr>
<tr>
<td>Direction: Allow 2-minute warmup.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>AUDIO OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setup:</td>
<td>In earphone and speaker: rushing noise loudness should increase. At full volume, rushing noise should be loud. As VOLUME control is turned ccw, rushing noise loudness should decrease. If rushing noise is not heard in earphone, refer to troubleshooting chart 2. If rushing noise is not heard in speaker, refer to troubleshooting chart 3.</td>
</tr>
<tr>
<td>1. Unplug Antenna Cable CG-1773 from AN/PRM-34 ANT jack.</td>
<td>CAUTION [Do not key an RT when its Antenna Cable (CG-1773) is unplugged.]</td>
</tr>
<tr>
<td>2. Appropriate audio accessories should be connected to RT being checked.</td>
<td></td>
</tr>
<tr>
<td>Turn RT VOLUME control fully clockwise (cw), then counterclockwise (ccw) to midpoint.</td>
<td></td>
</tr>
</tbody>
</table>

3-95
3-14. PROCEDURE USING TEST SET AN/PRM-34. (CONT)

Step 3 INITIAL MATCHING UNIT (MX) CONTROL

| Turn RT BAND switch to other setting; then return to original setting. |
| Switching sound should be heard at matching unit. (For the MX-6707 the range setting should agree with the RT MC setting.) If matching unit fails to switch, or switching won't stop, refer to troubleshooting chart 4. |

HOW TO PROCEED. Go to block B.

B. RT RECEIVER AND COMPLETE MX CONTROL CHECKS

Do these checks for all RT’s. When radio set is an AN/VRC -45 or -49, first do these checks for the A-RT and then as directed later do them again for the C-RT.

Step 4 SQUELCH CONTROL AND CALL LAMP

| Rotate RT SQUELCH switch through all four positions. |
| a. OFF positions: A loud rushing noise should be heard.
b. ON positions: The rushing noise should be quieted (eliminated).
c. CALL lamp: Should remain OFF for all positions.
If indications are not correct, RT being checked is bad. |

Step 5 RECEIVER SENSITIVITY (RECEPTION) AND COMPLETE MX CONTROL

Setup:
Turn AN/PRM-34 MODE switch to SEN SQ.

Direction:
For the RT being checked, starting with 50.00 MHz, do the substeps (a thru d) for each frequency listed below.

Frequency setting:
1. 50.00, 2. 45.00, 3. 40.00, 4. 35.00, 5. 30.00 (change BAND switch setting)
6. 55.00, 7. 60.00, 8. 65.00, 9. 70.00 and 10. 75.00.
3-14. PROCEDURE USING TEST SET AN/PRM-34. (CONT)

Step 5
Cont)

<table>
<thead>
<tr>
<th>a. As RT’s frequency is changed, listen for matching unit switching.</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. Turn RT SQUELCH switch to OLD OFF; then press down and release AN/PRM -34 PUSH TO TEST several times.</td>
</tr>
<tr>
<td>c. Turn RT SQUELCH switch to NEW OFF; then press down and release AN/PRM -34 PUSH TO TEST several times.</td>
</tr>
<tr>
<td>d. One at a time, tune RT (in 5-MHz steps) to other nine frequency settings listed. At each setting, repeat substeps a, b and c.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a. MX switching sound should be heard when RT MC setting is changed by more than 3 MHz. If for any setting, MX fails to switch or won’t stop switching, refer to troubleshooting chart 4.</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. When AN/PRM-34 PUSH TO TEST is pressed, rushing noise should be quieted and a tone should be heard at audio accessories. When AN/PRM-34 PUSH TO TEST is released, rushing noise should be heard. If indications are incorrect, RT being checked is bad.</td>
</tr>
<tr>
<td>c. Indication should be the same as substep b.</td>
</tr>
<tr>
<td>d. For each frequency setting, indications should be the same as in substeps a and b.</td>
</tr>
</tbody>
</table>

Step 6
SQUELCH SENSITIVITY

Setup:
1. Tune RT being checked to 75.00 MHz.
2. AN/PRM-34 MODE switch should be SENS SQ.

<table>
<thead>
<tr>
<th>a. Turn RT SQUELCH switch to NEW ON; then press down and release AN/PRM -34 PUSH TO TEST several times.</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. Turn RT SQUELCH switch to OLD ON; then press down again and release the AN/PRM-34 PUSH TO TEST several times.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a. When AN/PRM-34 PUSH TO TEST is pressed, CALL lamp should light and a tone should be heard. When AN/PRM-34 PUSH TO TEST is released, CALL lamp should go off and a very short burst of rushing noise should be heard. If indications are incorrect, RT being checked is bad.</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. Indication should be the same as substep a.</td>
</tr>
</tbody>
</table>

HOW TO PROCEED. Go to block C.
C. RT KEYING AND MUTING CHECKS

Do these checks for all RT’s. When radio set is an AN/VRC-45 or -49, first do these checks for the A-RT and then **as directed later** do them again for the C-RT.

Step 7 KEYING

<table>
<thead>
<tr>
<th>Setup for RT being checked:</th>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Turn SQUELCH switch to OLD OFF:</td>
<td>For this check, do not key RT when antenna is disconnected. When keyed, if blower does not run, do not keep RT keyed for more than 3 seconds.</td>
</tr>
<tr>
<td>2. Replug Antenna Cable CG-1773 to AN/PRM-34 ANT jack.</td>
<td></td>
</tr>
<tr>
<td>3. POWER switch should be LOW.</td>
<td></td>
</tr>
</tbody>
</table>

Key RT. (Press/release the PIT switch several times.) *(Unkey before going on.)*

When PTT is pressed, RT relays should click, blower should run; rushing noise should drastically reduce.
If RT fails to key, refer to trouble-shooting chart 5.
When PTT is released, relays should again click; rushing noise should return, blower might stop running.
If RT remains keyed, refer to trouble-shooting chart 6.

Step 8 MUTING

| With RT speaker on (VOLUME at mid-point) again key RT. | With mike at about 10 inches from speaker, there should be no audio feedback (squeal).
If feedback occurs, RT being checked is bad. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(Unkey RT before going on.)</td>
<td></td>
</tr>
</tbody>
</table>

HOW TO PROCEED. When RT being checked is an:
RT-246, go to block D.
RT-524, go to block F.
3-14. PROCEDURE USING TEST SET AN/PRM-34. (CONT)

D. RT-246 SERVO TUNE (AUTOMATIC TUNING) CHECK

Do this check for all RT-246’s. When radio set is an AN/VRC-45, first do this check for the A-RT and then as directed later do them again for the C-RT.

Step 9 AUTOMATIC TUNE

Setup for RT being checked:
Turn BAND switch to AUTO.

NOTE

Instructions for presetting RT-246 pushbuttons are on closed side of the pushbutton hinged cover.

Refer to sample DA Form 2404 of block F (page 3-102) for ten frequencies to be preset.

<table>
<thead>
<tr>
<th>a. Using the ten frequencies given, preset frequency 1 on pushbutton ①, frequency 2 on pushbutton ②, etc., until all ten are preset.</th>
<th>a. The preset frequency should appear in RT dial-frequency window as presetting is accomplished. MX switching sound should be heard.</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. In descending order, press each pushbutton, but allow each tuning cycle to complete before pressing another pushbutton.</td>
<td>b. RT MC-TUNE-KC controls and BAND switch (as appropriate) should change to preset frequency. MX switching sound should be heard. If RT fails to tune, RT being checked is bad. If for any preset frequency, MX fails to switch or won’t stop switching, refer to troubleshooting chart 4.</td>
</tr>
</tbody>
</table>

HOW TO PROCEED. When RT-246 being checked has:
C-2742’s, go to block E.
No C-2742’s, go to block F.

E. RT-246/REMOTE BOX, C-2742 INTERFACE CHECKS

Do these checks for all RT-246’s that have C-2742’s. When radio set is an AN/VRC-45, first do these checks for the A-RT and then as directed later do them again for the C-RT.
When two C-2742 remote boxes are in tandem, first check the box directly connected to the RT (primary C-2742).

Step 10 R-246 REMOTE INPUT POWER CONTROL

Setup:

For RT-246 being checked:

1. Press in RT-246 pushbutton (allow tuning cycle to complete).
2. Turn RT POWER switch to OFF.
3. Replug CX-7059 cable to appropriate RT REMOTE jack.
4. Unlock all C-2742 knob stops.
5. Turn all C-2742 CHAN SEL switches to channel 1 (lower left write-in space).
6. All C-2742 PWR SW (power switches) should be at OFF.
7. If two C-2742's are in tandem, unplug CX-4723 from primary C-2742 (J72).

<table>
<thead>
<tr>
<th>a. Turn RT POWER switch to REMOTE.</th>
<th>a. RT should remain off. If RT comes on, refer to troubleshooting chart 7.</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. Turn C-2742 PWR SW to LO; then press back and release C-2742 SW (toggle switch).</td>
<td>b. RT dial lamp and C-2742 control lamp should light. (C-2742 lamp might come on without pressing SW.) If lamp fails to light, refer to troubleshooting chart 8.</td>
</tr>
</tbody>
</table>

Step 11 R-246 HIGH/LOW TRANSMIT RF POWER CONTROL

<table>
<thead>
<tr>
<th>Turn C-2742 PWR SW to HI; then to LO several times.</th>
<th>RT’s high/low power relay should click each time C-2742 PWR SW is changed. If relay fails to click, refer to troubleshooting chart 9.</th>
</tr>
</thead>
</table>
Step 12 RT-246 Remote Frequency Selection

| In turn, **but allowing each tuning cycle to complete**, turn C-2742 CHAN SEL switch to each of its ten positions. | RT MC-TUNE-KC controls and BAND switch (as appropriate) should change according to the ten RT-246 preset frequencies. MX switching should occur. If RT tunes to a wrong frequency or won’t stop tuning, refer to troubleshooting chart 10. If RT fails to change frequency, refer to troubleshooting chart 11. |

Direction:
When C-2742’s are in tandem, replug CX-4723 to primary C-2742 (J72). Repeat steps 10b, 11 and 12 (above) for the second C-2742. (The primary C-2742 PWR SW **must remain at LO or HI.**) Upon completion go to step 13 below.

Step 13 RT-246 Remote Input Power Control Shutdown

| a. Turn primary C-2742’s PWR SW to OFF. | a. RT should stop operating. If RT continues to operate, refer to troubleshooting chart 7. |
| b. Turn RT POWER switch to LOW. | b. RT dial lamp should light. If lamp fails to light, RT being checked is bad. |

HOW TO PROCEED. Go to block F.

F. RT Transmitter RF Power Levels, Antenna, Frequency Accuracy Checks

Do this check for all RT’s. When radio set is an AN/VRC-45 or -49, first do these checks for the A-RT and then **as directed later** do them again for the C-RT.

CAUTION

Insure that all antenna components and cables are connected to the appropriate RT.

NOTE

During the checks of block F, specific RT data must be recorded. This data is in addition to other maintenance actions recorded on the reporting DA Form 2404. Refer to the following illustration for format of this additional worksheet.
Procedure Using Test Set AN/PRM-34 (Cont)

Additional DA Form 2404

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Status</th>
<th>Deficiencies and Shortcomings</th>
<th>Corrective Action</th>
<th>Initial When Corrected</th>
</tr>
</thead>
<tbody>
<tr>
<td>74.00</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>87.06</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>87.20</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>88.26</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>54.40</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

Equipment Inspection and Maintenance Worksheet

For use of this form see TM 38-700 the proponent agency is the Office of the Deputy Chief of Staff for Logistics.

- **Column a**: Enter TM item number.
- **Column b**: Enter applicable condition status symbol.
- **Column c**: Enter deficiencies and shortcomings.
- **Column d**: Show corrective action for deficiency or shortcoming listed in Column c.
- **Column e**: Individual attesting completed corrective action initial in this column.

Status Symbols

- "x" - Indicates a deficiency in the equipment that places it in an unserviceable status.
- "c" - Indicates a deficiency, however, the equipment may be operated under specific limitations as directed by higher authority or as prescribed locally.
- "h" - Indicates that a required inspection, component replacement, maintenance operation check or test flight is due but has not been accomplished, or an overdue MWO has not been accomplished.
- "f" - Indicates a material defect other than a deficiency which must be corrected to increase efficiency or to make the item completely serviceable.
- "i" - Indicates that a completely satisfactory condition exists.
- "(i)" - Indicates a material defect other than a deficiency which must be corrected to increase efficiency or to make the item completely serviceable.

All Inspections and Equipment Conditions Recorded on This Form Have Been Determined in Accordance with Diagnostics Procedures and Standards in the TM Cited Hereon.

Page Dimensions: 610.0 x 792.0

3-102
3-14. **PROCEDURE USING TEST SET AN/PRM-34. (CONT)**

Step 14 HIGH-LEVEL RF TRANSMIT POWER, AND FREQUENCY ACCURACY

Setup:
1. Prepare a worksheet (DA Form 2404). See illustration on previous page.
2. Turn POWER switch of RT being checked to HIGH.

NOTE

To obtain a valid check, the vehicle should be in a clear area of about a 25-foot radius of the RT’s antenna.

Direction:
For RT being checked, starting with 75.00 MHz, do the substeps (a thru e) for each frequency listed on worksheet.

CAUTION

Do not change RT tuning when RT is keyed.

<table>
<thead>
<tr>
<th>a. As RT frequency is changed, listen for matching unit switching.</th>
<th>a. MX switching sound should be heard when RT MC setting is changed. If for any setting, MX fails to switch or won’t stop switching, refer to troubleshooting chart 4.</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. Turn AN/PRM-34 MODE switch to FWD PWR. Key RT; then press down AN/PRM-34 PUSH TO TEST. (On worksheet, next to the appropriate listed frequency, record the AN/PRM-34 reading at substep a.) Release PUSH TO TEST.</td>
<td>b. AN/PRM-34 should indicate (display) between 30 and 65 watts. EXAMPLE: 75.00 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. AN/PRM-34 should indicate (display) no more than one-third of FWD PWR reading. EXAMPLE: 75.00 MHz</td>
</tr>
<tr>
<td>c. Turn AN/PRM-34 MODE switch to RVS PWR. Key RT; then press AN/PRM-34 PUSH TO TEST. (On worksheet, next to appropriate listed frequency, record the AN/PRM-34 reading at substep b.) Release PUSH TO TEST and unkey RT.</td>
<td>a. 40 FWD b. 13.3 RVS</td>
</tr>
</tbody>
</table>
3-14. PROCEDURE USING TEST SET AN/PRM-34. (CONT)

<table>
<thead>
<tr>
<th>Step 14 (Cont)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>d. Turn AN/PRM-34 MODE switch to FREQ. Key RT; allow 3-second warm-up, then press down AN/PRM-34 PUSH TO TEST. (On worksheet next to appropriate listed frequency, record the AN/PRM-34 reading at substep c.) Release PUSH TO TEST and unkey RT.</td>
<td></td>
</tr>
<tr>
<td>e. One at a time, tune RT being checked to other nine frequency settings listed on worksheet. At each frequency, repeat substeps a through d above and complete worksheet as directed.</td>
<td></td>
</tr>
<tr>
<td>d. AN/PRM-34 should indicate (display) the RT dial frequency setting plus or minus (±) 4 kHz. EXAMPLE: 35.60 MHz not less than 35.596 not more than 35.604 If result is more than 4 kHz off dial frequency, RT being checked is bad.</td>
<td></td>
</tr>
<tr>
<td>e. For each frequency setting, indications should be same as substeps a through d.</td>
<td></td>
</tr>
</tbody>
</table>

Troubleshooting conclusions: If for any frequency setting:

- RVS PWR is more than one-third of FWD PWR reading (regardless of FWD PWR reading), refer to troubleshooting chart 12.
- RVS PWR is less than one third of FWD PWR (okay) but FWD PWR is less than 30 watts or more than 65 watts, RT being checked is bad.

TRANSMITTED FORWARD-VS-REFLECTED POWER CHART (RT POWER SWITCH AT HIGH)

![Diagram of Transmitted Forward-Vs-Reflected Power Chart](EL8NZ191)
3-14. PROCEDURE USING TEST SET AN/PRM-34. (CONT)

Step 15 LOW-LEVEL RF TRANSMIT POWER

Setup:
1. Turn POWER switch of RT being checked to LOW.
2. Turn AN/PRM-34 MODE switch to FWD PWR.

a. Key RT; then press down AN/PRM-34 PUSH TO TEST.	a. AN/PRM-34 should indicate (display) 0.5 to 10 watts.
(Unkey RT before going on.)	If indication is incorrect, RT being checked is bad.
b. Change RT BAND switch to other position. Key RT; then press down AN/PRM-34 PUSH TO TEST.	b. Indication should be the same as substep a.
(Unkey RT before going on.)	

HOW TO PROCEED. Go to block G.

G. RT MODULATION AND SIDETONE CHECKS

Do these checks for all RT’s. When radio set is an AN/VRC-45 or -49, first do these checks for the A-RT and then, as directed later, do them again for the C-RT.

Step 16 150-Hz SIDETONE AND MODULATION

Setup:
POWER switch of RT being checked should be at LOW.

| Key RT; while keyed turn RT SQUELCH switch through all four positions. Listen to earphone. | 150-Hz sidetone should be heard in earphone for all SQUELCH positions except OLD ON. (Adjust RT VOLUME as required.) If sidetone is not heard, RT being checked is bad. |
| (Unkey RT before going on.) | |
3-14. PROCEDURE USING TEST SET AN/PRM-34. (CONT)

<table>
<thead>
<tr>
<th>Step 17</th>
<th>VOICE SIDETONE AND MODULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Key RT and initiate a radio check.</td>
</tr>
</tbody>
</table>

HOW TO PROCEED. When radio set being checked is an:

AN/VRC-12, -43, -44, -46, -47 or -48 with C-2299 or AN/VRC -45 or -49 whose C-RT has been checked, go to block H.
AN/VRC-12, -44, -47 or -48 without C-2299 or AN/VRC-45 or -49 whose C-RT has not been checked, go to block 1.
AN/VRC-43 or -46 without C-2299, go to block L.

H. RELAY BOX, C-2299 CHECKS

Do these checks for all radio sets that have C-2299’s.

<table>
<thead>
<tr>
<th>Step 18</th>
<th>A-RT AUDIO OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Setup:</td>
</tr>
<tr>
<td></td>
<td>1. C-2299 should be preset according to preset instructions on page 3-90.</td>
</tr>
<tr>
<td></td>
<td>2. Turn all RT speakers to OFF.</td>
</tr>
<tr>
<td></td>
<td>3. Turn all RT SQUELCH switches to NEW ON.</td>
</tr>
<tr>
<td></td>
<td>4. All RT POWER switches should be at LOW.</td>
</tr>
<tr>
<td></td>
<td>5. Connect A-RT audio accessories to C-2299 audio jacks.</td>
</tr>
</tbody>
</table>

NOTE

IAW means “In Accordance With”. This term applies throughout these checks.

a. Turn A-RT SQUELCH switch to NEW OFF; then vary A-RT VOLUME control. Return A-RT VOLUME control to midpoint.

b. Vary C-2299 VOLUME control. Return to fully cw position (full volume).

c. As heard in C-2299 earphone, loudness of rushing noise should vary IAW VOLUME setting. If rushing noise is not heard, refer to troubleshooting chart 13.

b. Same as substep a.
Step 19 A-RT KEYING

<table>
<thead>
<tr>
<th>Key A-RT. (Press/release PTT switch of audio accessory connected to C-2299 several times.)</th>
<th>When PTT is pressed, A-RT relays should click, A-RT blower should run; rushing noise should be drastically reduced. If A-RT fails to key, refer to troubleshooting chart 14. When PTT is released, A-RT relays should again click, rushing noise should return; A-RT blower might stop running. If A-RT remains keyed, refer to troubleshooting chart 6.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Unkey RT before going on.)</td>
<td></td>
</tr>
</tbody>
</table>

Step 20 A-RT MODULATION

<table>
<thead>
<tr>
<th>Key A-RT; initiate a radio check.</th>
<th>Voice sidetone should be heard in earphone connected to C-2299. If sidetone is not heard, refer to troubleshooting chart 15.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Unkey RT before going on.)</td>
<td></td>
</tr>
</tbody>
</table>

HOW TO PROCEED. When radio set being checked is an:
- AN/VRC-12, -44, -47 or -48, go to block 1.
- AN/VRC-45 or -49 (both RT’s checked), complete steps 21 through 24.
- AN/VRC-43 or -46, go to block L.

Step 21 C-RT AUDIO OUTPUT

<table>
<thead>
<tr>
<th>Setup: 1. Turn A-RT SQUELCH switch to NEW ON. 2. Turn C-2299 RAD TRANS switch to 2.</th>
<th>a. As heard in C-2299 earphone, loudness of rushing noise should vary IAW VOLUME setting. If rushing noise is not heard, refer to troubleshooting chart 13. b. Same as substep a.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Turn C-RT SQUELCH switch to NEW OFF; then vary C-RT VOLUME control. Return C-RT VOLUME control to midpoint.</td>
<td></td>
</tr>
<tr>
<td>b. Vary C-2299 VOLUME control. Return to fully cw position (full volume).</td>
<td></td>
</tr>
</tbody>
</table>
3-14. PROCEDURE USING TEST SET AN/PRM-34. (CONT)

<table>
<thead>
<tr>
<th>Step 22 C-RT KEYING</th>
<th>When PTT is pressed, C-RT relays should click, C-RT blower should run; rushing noise should be drastically reduced. If C-RT fails to key, refer to troubleshooting chart 14. When PTT is released, C-RT relays should again click, rushing noise should return; C-RT blower might stop running. If C-RT remains keyed, refer to troubleshooting chart 6.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key C-RT. (Press/release PTT switch of audio accessory connected to C-2299 several times.)</td>
<td></td>
</tr>
<tr>
<td>(Unkey RT before going on.)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 23 C-RT MODULATION</th>
<th>Voice sidetone should be heard in earphone connected to C-2299. If sidetone is not heard, refer to troubleshooting chart 15.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key C-RT; initiate a radio check.</td>
<td></td>
</tr>
<tr>
<td>(Unkey RT before going on.)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 24 RELAY (RETRANSMISSION)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Setup:</td>
<td></td>
</tr>
<tr>
<td>1. Turn both RT SQUELCH switches to NEW ON.</td>
<td></td>
</tr>
<tr>
<td>2. Both RT POWER switches should be at LOW.</td>
<td></td>
</tr>
<tr>
<td>3. Tune A-RT to 52.00 MHz.</td>
<td></td>
</tr>
<tr>
<td>4. Tune C-RT to 75.00 MHz.</td>
<td></td>
</tr>
<tr>
<td>5. AN/PRM-34 should be connected in C-RT’S rf antenna circuit.</td>
<td></td>
</tr>
<tr>
<td>CAUTION</td>
<td></td>
</tr>
<tr>
<td>Insure that RT antennas are properly cabled to their appropriate RT’s.</td>
<td></td>
</tr>
<tr>
<td>6. Turn AN/PRM-34 MODE switch to SENS SQ.</td>
<td></td>
</tr>
<tr>
<td>A-RT TRANSMITTER/C-RT RECEIVER</td>
<td></td>
</tr>
<tr>
<td>a. Turn C-2299 RETRANS switch to ON.</td>
<td></td>
</tr>
<tr>
<td>a. Both RT’s should remain unchanged. If indications are incorrect, refer to troubleshooting chart 16.</td>
<td></td>
</tr>
</tbody>
</table>
3-14. PROCEDURE USING TEST SET AN/PRM-34. (CONT)

<table>
<thead>
<tr>
<th>Step 24 (cont)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b. Turn C-2299 RAD TRANS switch to 1; then press down AN/PRM-34 PUSH TO TEST.</td>
<td>b. C-RT CALL lamp should light. A-RT should key, and a 900-Hz tone (A-RT modulation) should be heard in earphone connected to C-2299. If RT fails to key, refer to troubleshooting chart 17. If 900-Hz tone is not heard in earphone (A-RT modulation), refer to troubleshooting chart 18.</td>
<td></td>
</tr>
</tbody>
</table>

A-RT RECEIVER/C-RT TRANSMITTER

Directions:
1. Turn POWER to **both** RT’s to OFF. (Turn only A-RT POWER switch to OFF when C-RT power is remoted.)
2. Move AN/PRM-34 from C-RT rf antenna circuit to A-RT rf antenna circuit (see illustration on page 3-92).

CAUTION

Insure that RT antennas are properly cabled to their appropriate RT’s.

3. AN/PRM-34 MODE switch should be SENS SQ.
4. Tune A-RT to 75.00 MHz.
5. Tune C-RT to 52.00 MHz.
6. **Both** RT’s POWER switches should be low.

| c. Turn C-2299 RAD TRANS switch to 2; then press down AN/PRM-34 PUSH TO TEST. | c. A-RT CALL lamp should light. C-RT should key, and a 900-Hz tone (C-RT modulation) should be heard in the earphone connected to the C-2299. If C-RT fails to key, refer to troubleshooting chart 17. If 900-Hz tone (C-RT modulation) is not heard, refer to troubleshooting chart 18. |

HOW TO PROCEED. Go to block L.
3-14. PROCEDURE USING TEST SET AN/PRM-34. (CONT)

1. ADDITIONAL RADIO COMPONENT REMOTE INPUT POWER CONTROL CHECK

Do this check for all radio sets that have two or more radio components.

Step 25 REMOTE INPUT POWER CONTROL

NOTE

If for substep b, an additional radio component’s dial lamp lights, the link of that additional component’s mounting is probably in direct. Check with your supervisor for direction.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>Turn A-RT POWER switch to OFF.</td>
</tr>
<tr>
<td>b.</td>
<td>Turn all additional radio components POWER switches to ON. (Not A-RT.)</td>
</tr>
<tr>
<td>c.</td>
<td>Turn A-RT POWER switch to LOW.</td>
</tr>
<tr>
<td>a.</td>
<td>A-RT dial lamp should go off. If A-RT’s dial lamp remains on, A-RT is bad.</td>
</tr>
<tr>
<td>b.</td>
<td>Additional radio components dial lamps should not light. If an additional radio component’s dial lamp lights, the link in that component’s mount is probably in direct</td>
</tr>
<tr>
<td>c.</td>
<td>A-RT and additional radio component’s dial lamp should light. If additional radio component’s dial lamps fail to light, refer to troubleshooting chart 20.</td>
</tr>
</tbody>
</table>

HOW TO PROCEED. When radio set being checked is an:
AN/VRC-45 or -49, cable C-RT as shown in illustration on page 3-92 “RT-524/VRC or -246/VRC RT and RT’s Antenna Checks” and then check C-RT starting with block A.
AN/VRC-12, -44, -47 or -48, go to block J.

J. R-442 CHECKS

Do these checks for all radio sets that have R-442’s. When radio set is an AN/VRC-44 or -48, first do these checks for B-Receiver and then, as directed later, do them again for the C-Receiver.
Step 26 RECEIVER ANTENNA

<table>
<thead>
<tr>
<th>Setup:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Turn A-RT and all R-442 POWER switches to OFF.</td>
</tr>
<tr>
<td>2. Connect receiver antenna to AN/PRM-34 and RT as shown in illustration on page 3-93: "Auxiliary Receiver Antenna Check."</td>
</tr>
<tr>
<td>3. Turn AN/PRM-34 MODE switch to FWD PWR.</td>
</tr>
<tr>
<td>4. Turn A-RT POWER switch to HIGH (allow 2-minute warmup).</td>
</tr>
<tr>
<td>5. Tune A-RT to 62.20 MHz when standard AUX receiver antenna is used, 39.65 MHz when AS1095 is used.</td>
</tr>
</tbody>
</table>

| a. Key A-RT; then press down AN/PRM-34 PUSH TO TEST. |
| b. Turn AN/PRM-34 MODE switch to RVS PWR. Key A-RT; then press down AN/PRM-34 PUSH TO TEST. |

(Unkey before going on.) If indication is over one-third, refer to troubleshooting chart 21.

| a. AN/PRM-34 should indicate (display) between 30 and 65 watts. |
| b. AN/PRM-34 should indicate (display) no more than one-third of the FWD PWR reading. |

Step 27 AUDIO OUTPUT

<table>
<thead>
<tr>
<th>Setup:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Turn A-RT POWER switch to OFF.</td>
</tr>
<tr>
<td>2. Connect AN/PRM-34 to R-442 being checked as shown in illustration on page 3-94: "R-442/VRC Receiver Checks."</td>
</tr>
<tr>
<td>3. Turn AN/PRM-34 MODE switch to SENS SQ.</td>
</tr>
<tr>
<td>4. Controls of R-442 being checked should be preset according to instructions on page 3-90.</td>
</tr>
<tr>
<td>5. Connect audio accessories to AUDIO jack of R-442 being checked.</td>
</tr>
<tr>
<td>6. Set POWER switch of R-442 being checked to ON-RESET. (if required to turn R-442 on, turn A-RT POWER switch to LOW.)</td>
</tr>
</tbody>
</table>

Turn R-442 VOLUME control fully clockwise (cw); then counterclockwise (ccw) to midpoint.

In earphone and speaker (if used): Rushing noise loudness should increase; at full volume rushing noise should be loud. As VOLUME control is turned ccw, rushing noise loudness should decrease. If rushing noise is not heard in earphone, refer to troubleshooting chart 22. If rushing noise is not heard in speaker, refer to troubleshooting chart 23.
3-14. PROCEDURE USING TEST SET AN/PRM-34. (CONT)

<table>
<thead>
<tr>
<th>Step 28</th>
<th>SQUELCH CONTROL AND CALL LAMP</th>
</tr>
</thead>
</table>
| Rotate R-442 SQUELCH switch through all four positions. | a. **OFF positions:** Loud rushing noise should be heard.
b. **ON positions:** Rushing noise should be quieted (eliminated).
c. **CALL lamp** Should remain off for all positions. If indications are incorrect, R-442 being checked is bad.

<table>
<thead>
<tr>
<th>Step 29</th>
<th>RECEIVER SENSITIVITY (RECEPTION)</th>
</tr>
</thead>
</table>
| Setup: rum AN/PRM-34 MODE switch to SENS SQ.
Direction: For R-442 being checked, starting with 50.00 MHz, do the below listed substeps a,b and c) for each frequency listed below.
Frequency setting:
1. 50.00, 2. 45.00, 3. 40.00, 4. 35.00, 5. 30.00, (change BAND switch setting),
6. 55.00, 7. 60.00, 8. 65.00, 9. 70.00 and 10. 75.00. | a. When **AN/PRM-34 PUSH TO TEST** is pressed, rushing noise should be quieted and a tone should be heard at audio accessories. When **AN/PRM-34 PUSH TO TEST** is released, rushing noise should be heard. If indications are incorrect, R-442 being checked is bad.
b. Indication should be the same as substep a.
c. For each frequency setting, indications should be same as substeps a and b.

a. **Turn R-442 SQUELCH switch to OLD OFF;** then press down and release **AN/PRM-34 PUSH TO TEST** several times.
b. **Turn R-442 SQUELCH switch to NEW OFF;** then press down and release **AN/PRM-34 PUSH TO TEST** several times.
c. One at a time, tune R-442 (in 5-MHz steps) to other nine frequency settings listed. At each setting repeat substeps a and b.
3-14. PROCEDURE USING TEST SET AN/PRM-34. (CONT)

Step 30 SQUELCH SENSITIVITY

<table>
<thead>
<tr>
<th>Setup:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tune R-442 being checked to 75.00 MHz.</td>
</tr>
<tr>
<td>2. AN/PRM-34 MODE switch should be set at SENS SQ.</td>
</tr>
</tbody>
</table>

| a. Turn R-442 SQUELCH switch to NEW ON; then press down and release AN/PRM-34 PUSH TO TEST several times. |
| a. When AN/PRM-34 PUSH TO TEST is pressed, CALL lamp should light; a tone should be heard. When AN/PRM-34 PUSH TO TEST is released, CALL lamp should go off and a very short burst of rushing noise should be heard. If indications are incorrect, R-442 being checked is bad. |

| b. Turn R-442 SQUELCH switch to OLD ON; then press down and release AN/PRM-34 PUSH TO TEST several times. |
| b. Indication should be the same as sub-step a. |

HOW TO PROCEED. When radio set being checked is an:

AN/VRC-44 or -48 where C-Receiver has not been checked, check C-Receiver starting with step 27 of block J.

AN/VRC-12, -47 or -44, -48 whose C-Receiver has been checked, with:

- No R-442 speakers, go to block L.
- R-442 speakers, go to block K.

K. R-442 SPEAKER MUTING CHECK

Do this check for all radio sets whose R-442 has a speaker.

Step 31 SPEAKER MUTING

<table>
<thead>
<tr>
<th>Setup:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Connect a speaker (LS-454W) to an AUDIO jack of each R-442.</td>
</tr>
<tr>
<td>2. Tune all R-442’s to 75.00 MHz.</td>
</tr>
<tr>
<td>3. Turn all R-442 SQUELCH switches to OFF. (Verify rushing noise of all R-442 speakers.)</td>
</tr>
<tr>
<td>4. Turn all R-442 VOLUME controls, from off, one-quarter turn clockwise.</td>
</tr>
<tr>
<td>5. An audio accessory that has a push-to-talk switch should be connected to the A-RT RETRANSMIT (R/W) jack.</td>
</tr>
<tr>
<td>6. A-RT should be tuned to 62.20 MHz.</td>
</tr>
</tbody>
</table>
3-14. PROCEDURE USING TEST SET AN/PRM-34. (CONT)

<table>
<thead>
<tr>
<th>Step 31 (Cont)</th>
<th>Key RT. (Press/release PTT switch several times.)</th>
<th>When RT is keyed, rushing noise from R-442 speaker(s) should be greatly reduced. When RT unkeys, R-442 rushing noise from speaker(s) should return to prese level. If indications are incorrect, refer to troubleshooting chart 24.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Unkey, before going on.)</td>
<td></td>
</tr>
</tbody>
</table>

HOW TO PROCEED. Go to block L.

L. DISTANCE CHECK

Do this check for all AN/VRC-12 series radio sets,

Step 32 DISTANCE CHECK

Setup: Place radio set in its operational environment.

Establish communication with another radio set (station) located a prescribed distance away (planning range) (A simple Radio Check will do.)

The distant radio set (station) operator should respond. If response is not heard, check siting.

HOW TO PROCEED. Go to block M.

M. SHUTDOWN OF RADIO SET AFTER CHECK

Do this check for all AN/VRC-12 series radio sets.

Step 33 SHUT DOWN RADIO SET

Turn A-RT POWER switch to OFF

All components should stop operating. If A-RT won't stop operating and/or if additional radio components, whose mountings are set up for remote, don't stop operating, A-RT is bad.
3-14. PROCEDURE USING TEST SET AN/PRM-34 (CONT)

<table>
<thead>
<tr>
<th>Step 33 (Cont)</th>
<th>Direction:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Turn all additional radio component POWER switches to OFF.</td>
<td></td>
</tr>
<tr>
<td>2. Disconnect AN/PRM-34 test set and march order (repack in carrying case).</td>
<td></td>
</tr>
<tr>
<td>3. Recable radio set according to installation instructions, chapter 2, section III.</td>
<td></td>
</tr>
</tbody>
</table>

3-15. PROCEDURE USING TEST SET AN/URM-182.

The AN/URM-182, which includes Wattmeter TS-2609/URM-182, must be used to complete this procedure. Cabling instructions for the AN/URM-182 and TS-2609 switch settings will be given as they apply throughout the procedure.

INITIAL ADJUSTMENTS

WARNING

To safeguard against electrical shock and possible damage to equipment, remove or tape all personal exposed metal objects (e.g., watches, rings and medallions).

To prevent possible personnel injury and damage to the equipment, turn all communication component POWER switches to OFF. Depending on the type of vehicle and its actual radio set, turn to OFF the following:

NOTE

Refer to illustration of typical installation on page 2-6.

1. Switch box assembly (if included in cab compartment)
2. RT unit (RT-524/RT-246) POWER switches
3. R-442 POWER switches
4. C-2742 PWR SW (power switches)

CAUTION

Do not start vehicle engine with radio set turned on. Make certain that all components that have POWER switches are turned to OFF. Starting a vehicle engine with the radio components turned on can cause serious damage to the components.

INSTALLATION CHECKS

Refer to chapter 1, section II of this manual or an appropriate 2300 series TM to insure that all items of equipment of the radio set are properly installed and that all cables are properly routed and connected.

NOTE

TM 11-5820-401-10-1-HR contains example hand receipts that, based on the actual vehicle and radio set configuration, can be used to inventory items of equipment and determine National stock numbers (NSN'S).
3-15. PROCEDURE USING TEST SET AN/URM-182. (CONT)

PRESET CONTROLS

To establish a logical starting point for the evaluation procedure, the controls of the components of the radio set must be preset according to the following preparatory actions.

RECEIVER-TRANSMITTERS, RT-524/VRC AND RT-246/VRC

Set the controls of all Receiver - Transmitters as follows:

1. Turn BAND switch to 30-52.^A
2. Turn LIGHT switch to ON.
3. Turn SPEAKER switch to ON (RT-524 only).
4. Tune MC-TUNE-KC controls for 50.00 MHz.
5. Turn SQUELCH switch to OLD OFF.
6. Turn VOLUME control fully counterclockwise to no volume.

NOTE

Objectionable interference may result when RT is tuned to 33.90, 45.20, 56.50, and 67.80 MHz. Avoid tuning RT to these frequencies.

RECEIVERS R-442/VRC (WHEN INCLUDED)

Set the controls of all auxiliary receiver as follows:

1. Turn BAND switch to 30-52.^A
2. Turn LIGHT switch to ON.
3. Tune MC-TUNE-KC controls for 50.00 MHz.
4. Turn VOLUME control fully counterclockwise to no volume.
5. Turn SQUELCH switch to OLD OFF.

NOTE

RETRANS BOX, C-2299/VRC (WHEN INCLUDED)

Set the controls of all RETRANS boxes as follows:

1. Turn RAD TRANS switch to 1.
2. Turn RETRANS switch to OFF.
3. Turn VOLUME control fully clockwise to maximum volume.

NOTE

The C-2299 retrans box, though used primarily for a retrans function of the AN/VRC-49 and -45, also can be used as a convenience box for the connection of audio accessories for the six AN/VRC-12 configurations.
3-15. PROCEDURE USING TEST SET AN/URM-182. (CONT)

C-2742/VRC REMOTE BOX AND C-2299/VRC RETRANS BOX

The C-2742/VRC remote box is sometimes mounted on top of the C-2299/VRC retrans box. The remote box enables the operator to control the RT-246 dc input power, its transmit rf power level, and select preset channels of the RT-246/VRC from a remote (cab compartment) location.

In this case, the C-2299/VRC provides a remote connection for the RT-246 audio accessories.

REMOTE BOX, C-2742/VRC (WHEN INCLUDED)

Unplug all CX-7059 cables from their RT-246 REMOTE jacks.

RT ANTENNA MATCHING UNITS MX-6707/VRC AND MX-2799/VRC
3-15. PROCEDURE USING TEST SET AN/URM-182. (CONT)

If possible, on MX-6707, manually turn the frequency range tuning switch to 47.5-53 MHz. (This setting corresponds with the RT frequency setting of 50 MHz.) The MX-2799 requires no presetting.

AN/URM-182 (TS-2609) TEST SET CABLING

The TS-2609/URM-182 is an in-line wattmeter that is used to check the rf transmit power levels of the RT-524 and RT-246, and the effectiveness of the RT’s antenna and auxiliary receiver’s antenna. For any one of the radio sets being checked, first connect the wattmeter in-line with the A-RT antenna according to the first illustration below and then, as directed later connect it in-line with the other antennas.

RT-524/VRC OR -246/RC, RT AND RT ANTENNA CHECKS

- **RT-524/VRC (OR RT-246/VRC) Connector**
- **ANT CONT JACK**
- **J3**
- **ANT**
- **J-1**
- **P2**

Table: AN/URM-182 Test Set Cabling

<table>
<thead>
<tr>
<th>CABLE</th>
<th>COMPONENT</th>
<th>JACK</th>
<th>CABLE PLUG</th>
<th>COMPONENT</th>
<th>JACK</th>
<th>CABLE PLUG</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG-409</td>
<td>TS-2609</td>
<td>J3</td>
<td></td>
<td>A-RT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG-1773/RT</td>
<td>TS-2609</td>
<td>J4</td>
<td></td>
<td>Matching Unit</td>
<td>J-1</td>
<td></td>
</tr>
<tr>
<td>CX-4722/VRC</td>
<td>A-RT</td>
<td>ANT CONT</td>
<td>P1</td>
<td>Matching Unit</td>
<td>J-2</td>
<td>P2</td>
</tr>
</tbody>
</table>

NOTE

Set the meter SELECTOR SWITCH on the TS-2609 to 100 FWD position.

3-118
3-15. PROCEDURE USING TEST SET AN/URM-182. (CONT)

AUXILIARY RECEIVERS ANTENNA CHECKS

NOTE

Set the meter SELECTOR switch on the TS-2609 to 100 FWD position.
3-15. PROCEDURE USING TEST SET AN/URM-182. (CONT)

A. RT INPUT POWER, INITIAL RECEIVE, AND INITIAL MATCHING UNIT (MX) CONTROL CHECKS

Do these checks for all RT's. When radio set is an AN/VRC-45 or -49, first do these checks for the A-RT and then as directed later do them again for the C-RT.

<table>
<thead>
<tr>
<th>Step 1</th>
<th>INPUT POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTE</td>
<td>For this check, if matching unit was not initially preset, matching unit switching sound may be heard.</td>
</tr>
<tr>
<td>Turn RT POWER switch to HIGH.</td>
<td>RT dial lamp should light. If lamp fails to light, refer to troubleshooting chart 1. If RT keys (blower runs and FWD PWR check indicates rf transmit power), refer to troubleshooting chart 6.</td>
</tr>
<tr>
<td>Direction: Allow 2-minute warmup.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>AUDIO OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setup:</td>
<td>Appropriate audio accessories should be connected to RT being checked.</td>
</tr>
<tr>
<td>Turn RT VOLUME control fully clockwise (cw), then counterclockwise (ccw) to midpoint.</td>
<td>In earphone and speaker: Rushing noise loudness should increase. At full volume, rushing noise should be loud. As VOLUME control is turned ccw, rushing noise loudness should decrease. If rushing noise is not heard in earphone, refer to troubleshooting chart 2. If rushing noise is not heard in speaker, refer to troubleshooting chart 3.</td>
</tr>
</tbody>
</table>
3-15. PROCEDURE USING TEST SET AN/URM-182. (CONT)

<table>
<thead>
<tr>
<th>Step 3</th>
<th>INITIAL MATCHING (MX) UNIT CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Turn RT BAND switch to other setting; then return to original setting.</td>
</tr>
</tbody>
</table>

HOW TO PROCEED. Go to block B.

B. RT RECEIVER AND SQUELCH CHECKS

Do these checks for all RT’s. When radio set is an AN/VRC-45 or -49, first do these checks for the A-RT and then as directed later do them again for the C-RT.

<table>
<thead>
<tr>
<th>Step 4</th>
<th>SQUELCH CONTROL AND CALL LAMP</th>
</tr>
</thead>
</table>
| | Rotate RT SQUELCH switch through all four positions. | a. **OFF positions:** A loud rushing noise should be heard.
b. **ON positions:** The rushing noise should be quieted (eliminated).
c. **CALL lamp:** Should remain OFF for all positions. If indications are not correct, RT being checked is bad. |

<table>
<thead>
<tr>
<th>Step 5</th>
<th>RECEIVER (RECEPTION) AND SQUELCH SENSITIVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Setup: Tune RT being checked to receive a NET frequency.</td>
</tr>
</tbody>
</table>
3-15. PROCEDURE USING TEST SET AN/URM-182. (CONT)

<table>
<thead>
<tr>
<th>Step 5 (Cont)</th>
<th>RECEPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rotate RT SQUELCH switch through all four positions.</td>
</tr>
<tr>
<td></td>
<td>a. OFF positions: Rushing noise should be quieted and voice signals should be heard loud and clear. CALL lamp should remain off. If indications are incorrect, refer to troubleshooting chart 25.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>SQUELCH SENSITIVITY AND CALL LAMP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rotate RT SQUELCH switch through four positions.</td>
</tr>
<tr>
<td></td>
<td>b. ON positions: The CALL lamp should light and voice signals should be heard loud and clear. If in this step, substep a is correct but substep b is incorrect, RT being checked is bad.</td>
</tr>
</tbody>
</table>

HOW TO PROCEED. Go to block C.

C. RT KEYING AND MUTING CHECKS

Do these checks for all RT’s. When radio set is an AN/VRC-45 or -49, first do these checks for the A-RT and then **as directed later** do them again for the C-RT.

<table>
<thead>
<tr>
<th>Step 6</th>
<th>KEYING</th>
</tr>
</thead>
</table>
| | Setup: For RT being checked:
| | 1. Turn SQUELCH SWITCH to OLD OFF.
| | 2. Tune to a frequency other than a NET frequency.
| | 3. POWER switch should be at LOW. |

CAUTION

For this check, **do not** key RT when antenna is disconnected. When keyed, if blower does not run, **do not** keep RT keyed for more than 3 seconds.
3-15. PROCEDURE USING TEST SET AN/URM-182. (CONT)

<table>
<thead>
<tr>
<th>Step 6 (Cont)</th>
<th>Key RT. (Press/release the PTT switch several times.)</th>
<th>When PTT is pressed, RT relays should click, blower should run; rushing noise should drastically reduce. If RT fails to key, refer to troubleshooting chart 5. When PTT is released, relays should again click; rushing noise should return, blower might stop running. If RT remains keyed, refer to troubleshooting chart 6.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Unkey RT before going on.)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>MUTING</th>
<th>With RT speaker on (VOLUME at midpoint), again key RT. With mike at about 10 inches from speaker, there should be no audio feedback (squeal). If feedback occurs, RT being checked is bad.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(Unkey RT before going on.)</td>
</tr>
</tbody>
</table>

HOW TO PROCEED. When RT being checked is an:
- RT-246, go to block D
- RT-524, go to block F.

D. RT-246 SERVO TUNE (AUTOMATIC TUNING) CHECK

Do this check for all RT-246s. When radio set is an AN/VRC-45, first do this check for the A-RT and then **as directed later** do them again for the C-RT.

<table>
<thead>
<tr>
<th>Step 8</th>
<th>AUTOMATIC TUNE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Setup for RT being checked: Turn BAND switch to AUTO.</td>
</tr>
</tbody>
</table>

NOTE

Instructions for presetting RT-246 pushbuttons are on closed side of the pushbutton hinged cover.

Refer to sample DA Form 2404 [page 3-127] of block F for ten frequencies to be preset.
3-16. PROCEDURE USING TEST SET AN/URM-182, (CONT)

Step 8

- **a.** Using the ten frequencies given, preset frequency 1 on pushbutton, frequency 2 on pushbutton, etc, until all ten are preset.
- **b.** In descending order, press each pushbutton, but allow each tuning cycle to complete before pressing another push button.

a. The preset frequency should appear in RT dial-frequency window as presetting is accomplished. MX switching sound should be heard.

b. RT MC-TUNE-KC controls should change to preset frequency. MX switching sound should be heard. If RT fails to tune, RT being checked is bad. If, for any preset frequency, MX fails to switch or won’t stop switching, refer to troubleshooting chart 4.

HOW TO PROCEED. When RT-246 being checked has:
- C-2742’s, go to block E.
- No C-2742’s, go to block F.

E. RT-246/REMOTE BOX, C-2742 INTERFACE CHECKS

Do these checks for all RT-246’s that have C-2742’s. When radio set is an AN/VRC-45, first do these checks for the A-RT and then **as directed later** do them again for the C-RT.

When two remote boxes C-2742 are in tandem, first check the box directly connected to the RT (primary C-2742).
Step 9 R-246 REMOTE INPUT POWER CONTROL

Setup:

For RT-246 being checked:

1. Press in RT-246 pushbutton **1** (allow tuning cycle to complete).
2. Turn RT POWER switch to OFF.
3. Replug CX-7059 cables to appropriate RT REMOTE jack.
4. Unlock **all** C-2742 knob stops.
5. Turn **all** C-2742 CHAN SEL switches to channel 1 (lower left write-in space).
6. **All** C-2742 PWR SW (power switches) should be off.
7. If two C-2742’s are in tandem, unplug CX-4723 from primary C-2742 (J72).

<table>
<thead>
<tr>
<th>a. Turn RT POWER switch to REMOTE.</th>
<th>a. RT should remain off. If RT comes on, refer to troubleshooting chart 7.</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. Turn C-2742 PWR SW to LO then</td>
<td>b. RT dial lamp and C-2742 control lamp should light. (C-2742 lamp might</td>
</tr>
<tr>
<td>press back and release C-2742</td>
<td>come on without pressing PWR SW.) If lamps fail to light, refer to trouble-</td>
</tr>
<tr>
<td>SW (toggle switch).</td>
<td>shooting chart 8.</td>
</tr>
</tbody>
</table>

Step 10 RT-246 HIGH/LOW TRANSMIT RF POWER CONTROL

Turn C-2742 PWR SW to Hl; then to LO several times. RT high/low power relay should click each time C-2742 PWR SW is changed. If relay fails to click, refer to troubleshooting chart 9.

Step 11 RT-246 REMOTE FREQUENCY SELECTION

In turn, **but allow each tuning cycle to complete**, turn C-2742 CHAN SEL switch to each of its positions. RT MC-TUNE-KC controls and BAND switch (as appropriate) should change according to the ten RT-246 preset frequencies. (MX switching should occur.) If RT tunes to a wrong frequency or won’t stop tuning, refer to troubleshooting chart 10. If RT fails to change frequency, refer to troubleshooting chart 11.
3-15. PROCEDURE USING TEST SET AN/URM-182. (CONT)

<table>
<thead>
<tr>
<th>Step 11 (cont)</th>
<th>Direction: When C-2742’s are in tandem, replug CX-4723 to primary C-2742, (J72). Repeat steps 9b, 10 and 11 (above) for the second C-2742. (The primary C-2742 PWR SW must remain at LO or HI.) Upon completion, go to step 12 below.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Step 12</th>
<th>RT-246 REMOTE INPUT POWER CONTROL SHUTDOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Turn primary C-2742’s PWR SW to OFF.</td>
<td>a. RT should stop operating. If RT continues to operate, refer to troubleshooting chart 7.</td>
</tr>
<tr>
<td>b. Turn RT POWER switch to LOW.</td>
<td>b. RT dial lamp should light. If lamp fails to light, RT being checked is bad.</td>
</tr>
</tbody>
</table>

HOW TO PROCEED. Go to block F.

F. RT TRANSMITTER RF POWER LEVELS AND ANTENNA CHECKS

Do this check for all RT’s. When radio set is an AN/VRC-45 or -49, first do these checks for the A-RT and then as directed later do them again for the C-RT.

CAUTION

Insure that all antenna components and cables are connected to the appropriate RT.

NOTE

During the checks of block F, specific RT data must be recorded. This data is in addition to other maintenance actions recorded on the reporting DA Form 2404. Refer to the following illustration for layout format of this additional worksheet.
3-15. PROCEDURE USING TEST SET AN/URM-182. (CONT)

ADDITIONAL DA FORM 2404

EQUIPMENT INSPECTION AND MAINTENANCE WORKSHEET

For use of this form see TM 38-750 the proponent agency is the Office of the Deputy Chief of Staff for Logistics.

<table>
<thead>
<tr>
<th>1. ORGANIZATION</th>
<th>2. NOMENCLATURE AND MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT Serial no.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. REGISTRATION/NSN</th>
<th>4a. MILES</th>
<th>b. RT Model no. (e.g. RT-524, RT-248)</th>
<th>5. DATE</th>
<th>6. TYPE INSPECTION</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>TM NUMBER</th>
<th>TM DATE</th>
<th>TM NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLUMN a</td>
<td>Enter TM item number.</td>
<td></td>
</tr>
<tr>
<td>COLUMN b</td>
<td>Enter the applicable condition status symbol.</td>
<td></td>
</tr>
<tr>
<td>COLUMN c</td>
<td>Enter deficiencies and shortcomings.</td>
<td></td>
</tr>
</tbody>
</table>

STATUS SYMBOLS

- "X" - Indicates a deficiency in the equipment that places it in an inoperable status.
- CIRCLED "X" - Indicates a deficiency, however, the equipment may be operated under specific limitations as directed by higher authority or as prescribed locally, until corrective action can be accomplished.
- HORIZONTAL DASH "-" - Indicates that a required inspection, component replacement, maintenance operation check or test flight is due but has not been accomplished, or an overdue MWO has not been accomplished.

DIAGONAL "/" - Indicates a material defect other than a deficiency which must be corrected to increase deficiency or to make the item completely serviceable.

LAST NAME INITIAL IN BLACK, BLUE BLACK INK, OR PENCIL indicates that a completely satisfactory condition exists.

ALL INSPECTIONS AND EQUIPMENT CONDITIONS RECORDED ON THIS FORM HAVE BEEN DETERMINED IN ACCORDANCE WITH DIAGNOSTIC PROCEDURES AND STANDARDS IN THE TM CITED HEREIN.

<table>
<thead>
<tr>
<th>TM ITEM NO</th>
<th>STATUS</th>
<th>DEFICIENCIES AND SHORTCOMINGS</th>
<th>CORRECTIVE ACTION</th>
<th>INITIAL WHEN CORRECTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 75 06</td>
<td>a.</td>
<td>b.</td>
<td>6 31 45 s</td>
<td>b.</td>
</tr>
<tr>
<td>2 67 05</td>
<td>a.</td>
<td>b.</td>
<td>7 39 60 s</td>
<td>b.</td>
</tr>
<tr>
<td>3 62 20</td>
<td>a.</td>
<td>b.</td>
<td>8 39 65 s</td>
<td>b.</td>
</tr>
<tr>
<td>4 58 25</td>
<td>a.</td>
<td>b.</td>
<td>9 44 80 s</td>
<td>b.</td>
</tr>
<tr>
<td>5 54 40</td>
<td>a.</td>
<td>b.</td>
<td>10 50 85 s</td>
<td>b.</td>
</tr>
</tbody>
</table>

TM 11-5820-401-20-1 EE150-J A-MMO-010/E154 VRC 12, 43
3-15. PROCEDURE USING TEST SET AN/URM-182. (CONT)

Step 13 HIGH-LEVEL RF TRANSMIT POWER AND ANTENNA

<table>
<thead>
<tr>
<th>Setup:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepare a worksheet (DA Form 2404). See illustration on previous page.</td>
</tr>
<tr>
<td>Turn POWER switch of RT being checked to HIGH.</td>
</tr>
<tr>
<td>TS-2609 SELECTOR switch should be at 100 FWD.</td>
</tr>
</tbody>
</table>

NOTE

To obtain a valid check, the vehicle should be in a clear area of at least a 25-foot radius from the RT antenna.

Direction:
For RT being checked, starting with 75.00 MHz, do the substeps (a thru d) for each frequency listed on worksheet.

CAUTION

Do not change RT tuning when RT is keyed.

<table>
<thead>
<tr>
<th>a. As RT frequency is changed, listen for matching unit switching.</th>
<th>a. MX switching sound should be heard when RT MC setting is changed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. Key RT and observe TS-2609 meter reading. (On worksheet, next to appropriate listed frequency, record TS-2609 reading at substep a.) Unkey RT.</td>
<td>If for any setting, MX fails to switch or won’t stop switching, refer to troubleshooting chart 20.</td>
</tr>
<tr>
<td>EXAMPLE: 75.00 MHz</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
<tr>
<td>FWD</td>
<td></td>
</tr>
</tbody>
</table>

Regardless of reading, complete substeps c and d before referring to troubleshooting conclusions at end of this step.

Direction:
For this substep, when initial reading is less than 10, hold the TS-2609 SELECTOR switch in 10RFL (RT keyed).
3-15. PROCEDURE USING TEST SET AN/URM-182. (CONT)

<table>
<thead>
<tr>
<th>Step 13 (Cont)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>c. Turn TS-2609 SELECTOR switch to 100 RFL, key RT and observe the meter reading. (On worksheet, next to appropriate listed frequency, record TS-2609 reading at substep b.) Unkey RT.</td>
<td>c. TS-2609 should indicate no more than one-third of FWD PWR reading.</td>
</tr>
<tr>
<td>d. One at a time, tune RT being checked to other nine frequency settings listed on worksheet. At each frequency setting, repeat substep a through c and complete worksheet as directed.</td>
<td>EXAMPLE: 75.00 MHz</td>
</tr>
<tr>
<td></td>
<td>a. 40</td>
</tr>
<tr>
<td>d. For each frequency setting, indications should be the same as substeps a through c. Troubleshooting conclusions: If, for any frequency setting:</td>
<td>d. For each frequency setting, indications should be the same as substeps a through c. Troubleshooting conclusions: If, for any frequency setting:</td>
</tr>
<tr>
<td></td>
<td>RFL PWR is more than one-third of FWD PWR reading, regardless of the FWD PWR reading, refer to troubleshooting chart 12.</td>
</tr>
<tr>
<td></td>
<td>RFL PWR is less than one-third of FWD PWR (okay) but FWD PWR is less than 30 watts or more than 65 watts, RT being checked is bad.</td>
</tr>
</tbody>
</table>

TRANSMITTED FORWARD-VS-REFLECTED POWER CHART (RT POWER SWITCH AT HIGH)

![Transmitted Forward vs Reflected Power Chart](image-url)
3-15. PROCEDURE USING TEST SET AN/URM-182. (CONT)

Step 14 LOW-LEVEL RF TRANSMIT POWER

Setup:
1. Tune RT being checked to a frequency other than a NET frequency.
2. Turn POWER switch of RT being checked to LOW.
3. Turn TS-2609 SELECTOR switch to 100 FWD.

NOTE
For this step, when the initial indication is less than 10 watts, hold TS-2609 SELECTOR switch in the 10 FWD position (RT keyed).

| a. Key RT. (Unkey RT before going on.) | a. TS-2609 should indicate 0.5 to 10 watts. If indication is incorrect, RT being checked is bad. |
| b. Change RT BAND switch to other position; then key RT. (Unkey RT before going on.) | b. Indication should be the same as sub-step a. |

HOW TO PROCEED. Go to block G.

G. RT MODULATION, SIDETONE AND TRANSMITTER FREQUENCY ACCURACY CHECKS

Do these checks for all RT’s. When radio set is an AN/VRC-45 or -49, first do these checks for the A-RT and then as directed later do them again for the C-RT.

Step 15 150-Hz SIDETONE AND MODULATION

Setup for RT being checked:
POWER switch should be LOW.

| Key RT; while keyed, turn RT SQUELCH switch through all four positions. Listen to earphone. (Unkey RT before going on.) | 150-Hz sidetone should be heard in earphone for all SQUELCH positions except OLD ON. (Adjust RT VOLUME as (required). |
| If sidetone is not heard, RT being checked is bad. |
3-15. PROCEDURE USING TEST SET AN/URM-182. (CONT)

Step 16 VOICE SIDETONE AND MODULATION

| Key RT and initiate a radio check. | Voice sidetone should be heard in ear- |
| (Unkey RT before going on.) | phone. (Adjust RT VOLUME as required.) |

If sidetone is not heard, RT being checked is bad.

Step 17 TRANSMITTER FREQUENCY ACCURACY

Setup:
For RT being checked:
1. Tune to a NET frequency.
2. Turn SQUELCH switch to NEW ON.

NOTE

If, for this check, the distant receiver’s front panel cannot be seen, initiate a radio check with distant station.

For this check, when communication cannot be established in LOW power, turn POWER switch of RT being checked to HIGH and repeat this step.

Key RT and initiate a radio check. CALL lamp should light at test receiver or NET operator should respond. If indications are Incorrect, check sitting; if okay, RT being checked is bad.

HOW TO PROCEED. When radio set being checked is an:
AN/VRC-12, -43, -44, -46, -47 or -48 with C-2299 or AN/VRC-45 or 49 whose C-RT has been checked, go to block H.
AN/VRC-12, -44, -47 or -48 without C-2299 or AN/VRC-45 or -49 whose C-RT has not been checked, go to block 1.
AN/VRC-43 or -46 without C-2299, go to block L.

H. RELAY BOX, C-2299, CHECKS

Do these checks for all radio sets that have C-2299’s.
3-15. PROCEDURE USING TEST SET AN/URM-182. (CONT)

Step 18 A-RT AUDIO OUTPUT

Setup:
1. C-2299 should be preset according to instructions on page 3-116.
2. Turn all RT speakers to OFF.
3. Turn all RT SQUELCH switches to NEW ON.
4. All RT POWER switches should be at LOW.
5. Connect an RT audio accessory to C-2299 audio jack.

NOTE

IAW means “In Accordance With”. This term applies throughout these checks.

- a. Turn A-RT SQUELCH switch to NEW OFF; then vary A-RT VOLUME control. Return A-RT VOLUME control to midpoint.
- b. Vary C-2299 VOLUME control. Return to fully cw position (full volume).
- a. As heard in C-2299 earphone, loudness of rushing noise should vary IAW VOLUME setting. If rushing noise is not heard, refer to troubleshooting chart 13.
- b. Same as substep a.

Step 19 A-RT KEYING

Key A-RT. (Press/release PTT switch of audio accessory connected to C-2299 several times.)

(Unkey RT before going on.)

When PTT is pressed, A-RT relays should click, A-RT blower should run; rushing noise should be drastically reduced. If A-RT fails to key, refer to troubleshooting chart 14.

When PTT is released, A-RT relays should again click, rushing noise should return; A-RT blower might stop running. If A-RT remains keyed, refer to troubleshooting chart 6.

Step 20 A-RT MODULATION

Key A-RT; initiate a radio check.

(Unkey RT before going on.)

Voice sidetone should be heard in earphone connected to C-2299. If sidetone is not heard, refer to troubleshooting chart 15.
3-15. PROCEDURE USING TEST SET AN/URM-182. (CONT)

Step 20 (cont)
HOW TO PROCEED. When radio set being checked is an:
A/N/VRC-12,-44,-47 or -48, go to block 1.
A/N/VRC-45, or -49 (both RT’s checked), complete steps 21 through 24.
A/NVRC-43 or -46, go to block L.

Step 21 C-RT AUDIO OUTPUT

Setup:
1. Turn A-RT SQUELCH switch to NEW ON.
2. Turn C-2299 RAD TRANS switch to 2.

<table>
<thead>
<tr>
<th>a. Turn C-RT SQUELCH switch to NEW OFF; then vary C-RT VOLUME control. Return C-RT VOLUME control to midpoint.</th>
<th>a. As heard in C-2299 earphone, loudness of rushing noise should vary IAW VOLUME setting. If rushing noise is not heard, refer to troubleshooting chart 13.</th>
</tr>
</thead>
</table>

Step 22 C-RT KEYING

Key C-RT. (Press/release PTT switch of audio accessory connected to C-2299 several times.)
(Unkey RT before going on.)

When PTT is pressed, C-RT relays should click, C-RT blower should run; rushing noise should be drastically reduced. If C-RT fails to key, refer to troubleshooting chart 14.

When PTT is released, C-RT relays should click again, rushing noise should return; C-RT blower might stop running. If C-RT remains keyed, refer to troubleshooting chart 6.

Step 23 C-RT Modulation

Key C-RT; initiate a radio check.
(Unkey RT before going on.)

Voice sidetone should be heard in earphone connected to C-2299.
If sidetone is not heard, refer to troubleshooting chart 15.
3-15. **PROCEDURE USING TEST SET AN/URM-182. (CONT)**

Step 24 RELAY (RETRANSMISSION)

<table>
<thead>
<tr>
<th>Setup:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Turn both RT SQUELCH switches to NEW ON.</td>
</tr>
<tr>
<td>2. Both RT POWER switches should be at LOW.</td>
</tr>
<tr>
<td>3. Tune C-RT to 50.85 MHz.</td>
</tr>
<tr>
<td>4. Tune A-RT to 73.85 MHz.</td>
</tr>
<tr>
<td>5. Turn C-2299 RAD TRANS switch to 1.</td>
</tr>
</tbody>
</table>

A-RT TRANSMITTER/C-RT RECEIVER

<table>
<thead>
<tr>
<th>a. Turn C-2299 RETRANS switch to ON.</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. Turn C-RT SQUELCH switch to NEW OFF. At C-RT RETRANS (R/N) jack,</td>
</tr>
<tr>
<td>short pin E to ground.</td>
</tr>
<tr>
<td>c. At C-RT remove short (pin E to ground). Turn C-RT SQUELCH switch</td>
</tr>
<tr>
<td>to NEW ON.</td>
</tr>
</tbody>
</table>

| a. Both RT's should remain unchanged. If indications are incorrect, |
| refer to troubleshooting chart 16. |
| b. C-RT CALL lamp should light. A-RT should key and rushing |
| noise (A-RT modulation) should be heard in earphone connected to |
| C-2299. If A-RT fails to key, refer to troubleshooting chart 17. |
| If rushing noise (A-RT modulation) is **not** heard, refer to |
| troubleshooting chart 18. |
| c. C-RT CALL lamp should go out. A-RT should unkey, rushing noise |
| should not be heard. If indications are incorrect, refer to |
| troubleshooting chart 16. |

C-RT TRANSMITTER/A-RT RECEIVER

<table>
<thead>
<tr>
<th>Setup:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn C-2299 RAD TRANS switch to 2.</td>
</tr>
</tbody>
</table>
3-15. PROCEDURE USING TEST SET AN/URM-182. (CONT)

Step 24 (cont)	Turn A-RT SQUELCH switch to NEW OFF. At A-RT RETRANS (R/W) jack, short pin E to ground.	d. A-RT CALL lamp should light, C-RT should key and rushing noise (C-RT modulation) should be heard in earphone connected to C-2299. If C-RT fails to key, refer to troubleshooting chart 17. If rushing noise (C-RT modulation) is not heard, refer to troubleshooting chart 18.
	At A-RT, remove short (pin E to ground). Turn A-RT SQUELCH switch to NEW ON.	e. A-RT CALL lamp should go out, C-RT should unkey and rushing noise should be heard, If Indications are Incorrect refer to troubleshooting chart 16.
	Direction: Turn C-2299 RETRANS switch to OFF.	

HOW TO PROCEED. Go to block L.

I. ADDITIONAL RADIO COMPONENT REMOTE INPUT POWER CONTROL CHECK

Do this check for all radio sets that have two or more radio components.

Step 25 REMOTE INPUT POWER CONTROL

<table>
<thead>
<tr>
<th>NOTE</th>
<th>If for substep b, an additional radio component’s dial lamp lights, the link of that additional component’s mount is probably in direct. Check with your supervisor for direction.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>Turn A-RT POWER switch to OFF.</td>
</tr>
<tr>
<td>b.</td>
<td>Turn all additional radio component’s POWER switches to ON.</td>
</tr>
<tr>
<td>a.</td>
<td>A-RT dial lamp should go off, If dial lamp remains on, A-RT being checked is bad.</td>
</tr>
<tr>
<td>b.</td>
<td>Additional radio component’s dial lamps should not light, If additional radio component’s mounting is set for remote and that radio component’s dial lamp lights, refer to troubleshooting chart 19.</td>
</tr>
</tbody>
</table>
3-15. PROCEDURE USING TEST SET AN/URM-182. (CONT)

<table>
<thead>
<tr>
<th>Step 25 (Cont)</th>
<th>c. Turn A-RT POWER switch to LOW.</th>
<th>c. A-RT and additional radio component’s dial lamps should light. If additional radio component’s dial lamps fail to light, refer to troubleshooting chart 20.</th>
</tr>
</thead>
</table>

HOWTO PROCEED. When radio set being checked is an: AN/VRC-45 or -49, cable C-RT as shown in illustration on page 3-118. RT-524/VRC or -246/VRC RT and RT’s Antenna Checks and then check C-RT starting with block A. AN/VRC-12, -44, -47 or -48, go to block J.

J. R-442 CHECKS

Do these checks for all radio sets that have R-442’s. When radio set is an AN/VRC-44 or -48, first do these checks for B-Receiver and then as directed later, do them again for C-Receiver.

<table>
<thead>
<tr>
<th>Step 26 RECEIVER ANTENNA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Setup:</td>
<td>1. Turn A-RT and all R-442 POWER switches to OFF.</td>
</tr>
<tr>
<td></td>
<td>2. Connect receiver antenna to AN/URM-182 and RT as shown in illustration on page 3-119: “R-442 Antenna Check.”</td>
</tr>
<tr>
<td></td>
<td>3. Turn TS-2609 SELECTOR switch to 100 FWD.</td>
</tr>
<tr>
<td></td>
<td>4. Turn A-RT POWER switch to HIGH (allow 2-minute warmup).</td>
</tr>
<tr>
<td></td>
<td>5. Tune A-RT to 62.20 MHz when standard AUX receiver antenna is used, 39.65 MHz when AS1095 is used.</td>
</tr>
<tr>
<td>a. Key A-RT and observe TS-2609 meter reading.</td>
<td>a. TS-2609 should indicate between 30 and 65 watts.</td>
</tr>
<tr>
<td>b. Turn TS-2609 SELECTOR switch to 100 RFL, then key RT and observe meter reading. (If RFL reading is 10 or less, turn TS-2609 SELECTOR switch to 10 RFL.)</td>
<td>b. TS-2609 RFL reading should be no more than one-third of FWD PWR reading. If indication is over one-third, refer to troubleshooting chart 21.</td>
</tr>
<tr>
<td>(Unkey RT before going on.)</td>
<td></td>
</tr>
</tbody>
</table>

3-136 Change 1
3-15. PROCEDURE USING TEST SET AN/URM-182. (CONT)

Step 27 AUDIO OUTPUT

Setup:
1. Turn A-RT POWER switch to OFF.
2. Controls of R-442 being checked should be preset according to instructions [on page 3-116](#).
3. Connect audio accessories to AUDIO jack of R-442 being checked.
4. Set POWER switch of R-442 being checked to ON-RESET. (If required to turn R-442 on, turn A-RT POWER switch to LOW.)

<table>
<thead>
<tr>
<th>Turn R-442 VOLUME control fully clockwise (cw); then counterclockwise (ccw) to midpoint.</th>
<th>In earphone and speaker (if used), rushing noise loudness should increase; at full volume, rushing noise should be loud. As VOLUME control is turned ccw, rushing noise loudness should decrease. If rushing noise is not heard in earphone, refer to troubleshooting chart 22. If rushing noise is not heard in speaker, refer to troubleshooting chart 23.</th>
</tr>
</thead>
</table>

Step 28 SQUELCH CONTROL AND CALL LAMP

| Rotate R-442 SQUELCH switch through all four positions. | a. **OFF positions**: Loud rushing noise should be heard.
b. **ON positions**: Rushing noise should be quieted (eliminated).
c. **CALL lamp**: Should remain off for all positions.
If indications are incorrect, R-442 being checked is bad. |
|---|---|

Step 29 RECEIVER (RECEPTION) AND SQUELCH SENSITIVITY

Setup:
Tune R-442 being checked to receive a NET frequency.
3-15. PROCEDURE USING TEST SET AN/URM-182. (CONT)

Step 29

RECEPTION

- a. Rotate R-442 SQUELCH switch through **all** four positions.

- a. **OFF position**. Rushing noise should be quieted and voice signals should be heard loud and clear. CALL lamp should remain off. If indications are incorrect, R-442 being checked is bad.

SQUELCH SENSITIVITY AND CALL LAMP

- b. Rotate R-442 SQUELCH switch through **all** four positions.

- b. **ON position**. Call lamp should light and voice signals should be heard loud and clear. If indications are incorrect, R-442 being checked is bad.

HOW TO PROCEED. When radio set being checked is an:

- AN/VRC.44 or -48 whose C-Receiver has not been checked, check C-Receiver starting with step 27 of block J.

- AN/VRC-12, -47, or -44, -48 whose C-Receiver **has** been checked with:
 - No R-442 speakers, go to block L.
 - R-442 speakers, go to block K.

K. R-442 SPEAKER MUTING CHECK

Do this check for all radio sets whose R-442 has a speaker.

Step 30

SPEAKER MUTING, RT KEYED

Setup:

1. Connect a speaker (LS-454/U) to an AUDIO jack of each R-442.
2. Tune **all** R-442’s to 75.00 MHz.
3. Turn **all** R-442 SQUELCH switches to **OFF**. (Verify rushing noise of all R-442 speakers.)
4. Turn **all** R-442 VOLUME controls, from off, one-quarter-turn clockwise.
5. An audio accessory that has a PUSH TO TALK switch should be connected to A-RT RETRANS MIT (R/W) jack.
6. A-RT should be tuned to 62.20 MHz.
3-15. PROCEDURE USING TEST SET AN/URM-182. (CONT)

<table>
<thead>
<tr>
<th>Step 30 (Cont)</th>
<th>Key RT (Press/release PTT switch several times.)</th>
<th>When RT is keyed, rushing noise from R-442 speaker(s) should be greatly reduced. When RT unkeys, R-442 rushing noise from speakers should return to preset level. If indications are incorrect, refer to troubleshooting chart 24.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Unkey RT before going on.)</td>
<td></td>
</tr>
</tbody>
</table>

HOW TO PROCEED. Go to block L.

L. DISTANCE CHECK

Do this check for all AN/VRC-12 series radio sets.

<table>
<thead>
<tr>
<th>Step 32 DISTANCE CHECK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setup:</td>
</tr>
<tr>
<td>Place radio set in its operational environment.</td>
</tr>
<tr>
<td>Establish communication with another radio set (station) located a prescribed distance away (planning range). (A simple Radio Check will do.)</td>
</tr>
<tr>
<td>The distant radio set (station) operator should respond. If response is not heard, check siting.</td>
</tr>
</tbody>
</table>

HOW TO PROCEED. Go to block M.
3-15. PROCEDURE USING TEST SET AN/URM-182. (CONT)

M. SHUTDOWN OF RADIO SET AFTER CHECK

Do this check for all AN/VRC-12 series radio sets.

<table>
<thead>
<tr>
<th>Step 33 SHUT DOWN RADIO SET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn A-RT POWER switch to OFF.</td>
</tr>
</tbody>
</table>

Direction:
1. Turn all additional radio components POWER switches to OFF
2. Disconnect the AN/URM-182 test set and march order (repack in carrying case).
3. Recable radio set according to installation instructions, chapter 2, section III.
3-16. **RT.246(*)/VRC AND RT-524(*)/VRC.**

REMOVAL OF RT

TOOLS: Tool Kit, Electronic Equipment TK-101/G

PRELIMINARY PROCEDURE: Turn RT POWER switch to OFF.

Remove cables from RT.

WARNING

The RT weighs 61 pounds. Two technicians should lift the RT.

1. Unscrew two thumbscrews (1) to lower clamp (2). Turn thumbscrews counterclockwise (ccw).
2. Pull RT (3) forward until rear of RT (3) is clear of radio jack (J24) (4).

CAUTION

Use both handles or guards to pull and then lift RT to prevent equipment damage.

Be careful to slide the RT into (or out of) the MT-1029/VRC. Damage to the radio jack (J24) can occur.

3. Lift RT (3) from mounting (5).

REPLACEMENT OF RT

For replacement of RT, see [paragraph 2-11](#).
3.16. RT-246(*)IVRC AND RT*524*)IVRC. (CONT)

INSTALLATION OF HANDLE ASSEMBLY

TOOLS: Tool Kit, Electronic Equipment TK-101/G
PRELIMINARY PROCEDURE: Place RT on its side on floor.

CAUTION

Do not set RT on its rear panel, Damage to the RT blower could result.

NOTE

Due to bolt configuration on bottom of RT, left and right handle assemblies cannot be interchanged.

1. Using screwdriver, loosen and remove six screws (1) from top and bottom of RT (2).
2. Position top and bottom of handle assembly(3) on RT (2) and aline holes.
3. Using screwdriver, insert and tighten six screws (1) in top and bottom of handle assembly.
4. Turn RT (2) over so that it is resting on side with handle assembly (3) installed.
5. Repeat this procedure for other handle assembly.

REMOVAL OF SIDE AND REAR COVER PANELS

This procedure applies to the side and rear cover panels.

TOOLS: Tool Kit, Electronic Equipment TK-101/G
PRELIMINARY PROCEDURE: Remove RT from mounting and place on left side. (See page 3-141)

CAUTION

Do not set RT on its rear panel. Damage to the RT blower could result.
3-16. RT-248(*)/VRC AND RT-524(*)/VRC. (CONT)

CAUTION

Do not remove RT top and bottom cover. Dirt and other substances will damage internal parts.

1. Using screwdriver, loosen six captive screws (1) of side cover panel (2).
2. Remove side cover panel (2) from RT (3).
3. Using screwdriver, loosen eight captive screws (4) of rear cover panel (5).
4. Remove rear cover panel (5) from RT (3).

REPLACEMENT OF COVER PANELS

1. Put rear cover panel (5) on RT (3).
2. Using screwdriver, tighten eight captive screws (4).
3. Put side cover panel (2) in place.
4. Using screwdriver, tighten six captive screws (1).
3-16. RT-246(*)/VRC AND RT-524(*)/VRC. (CONT)

REMOVAL OF DIRT FROM HEAT EXCHANGER AND BLOWER ASSEMBLY

TOOLS: Tool Kit, Electronic Equipment TK-101/G
PRELIMINARY PROCEDURE: Remove RT from mounting and set on its left side. [See page 3-141]
Remove side and back covers [page 3-143].

CAUTION

Do not remove top end/or bottom covers of RT. Dirt from cleaning the heat exchanger surfaces could get inside the radio. Do not use trichlorotrifluoroethane when cleaning RT. Damage to power transistor assembly will occur.

1. Using stiff-haired brush, loosen encrusted dirt from heat exchanger surfaces (1).
2. Using stiff-haired brush, loosen dirt from power transistor assembly surfaces (2).
3. Using soft-haired brush, remove dirt from heat exchanger surfaces (1).
4. Using soft-haired brush, remove dirt from power transistor assembly surfaces (2).
5. Using toothbrush, remove dirt from vanes and fins(3) of blower motor.

NOTE

For replacement of covers, see replacement of cover panels on page 3-143.

For replacement of RT, see paragraph 2-11.
3-16. RT.246(*)/VRC AND RT-524(*)/VRC. (CONT)

REMOVAL OF BOTTOM COVER

TOOLS: Tool Kit, Electronic Equipment TK-101/G
MATERIALS/PARTS: Silicone compound (item 1, appendix C)
PRELIMINARY PROCEDURE: Remove RT from mounting. (See page 3-141)

CAUTION

Do not set RT on its rear panel. Damage to the RT blower could result.

1. Using screwdriver, loosen 11 captive screws (1) from bottom cover (2).
2. Remove bottom cover (2) from RT (3).

REPLACEMENT OF BOTTOM COVER

NOTE

All radio components have a preformed gasket that requires lubrication before replacing the cover.

1. Apply thin coat of silicone compound (item 1, appendix C) to preformed gasket (4).
2. Put bottom cover (2) in place.
3. Using screwdriver, tighten 11 captive screws (1).
3-16. RT-246(*)/VRC AND RT.524(*)/VRC. (CONT)

REPLACEMENT OF KNOBS, CALL LAMP AND DIAL WINDOW LAMP

Replacement procedures are the same for the RT-246, RT-246A, RT-524, and RT-524A.

TOOLS: Tool Kit, Electronic Equipment TK-101/G
PRELIMINARY PROCEDURE: Turn RT POWER switch to OFF.

NOTE

Note position of indicator line on knob when removing. Replace new knob in the same position.

1. Using screwdriver, unscrew and remove screw (1) from knob (2).
2. Pull knob (2) from associated RT (3) control.

Replacement of Knobs

1. Push knob (2) on associated RT (3) control.
2. Using screwdriver, tighten screw (1).

Removal of Call Lamp

1. Unscrew and remove lens (4) with lamp (5) and O-ring (6) from call lamp fixture.
2. Pull lamp (5) from lens (4).
3-16. RT-246(*)/VRC AND RT-524(*)/VRC. (CONT)

Replacement of Call Lamp

NOTE

Check if O-ring is properly seated around lens.

1. Push lamp (5) in lens (4).
2. Screw lens (4) with lamp (5) and O-ring (6) into RT’s call lamp fixture.

CAUTION

Do not overtighten lens.

Replacement of Dial Window Lamp

1. Unscrew and remove lamp screw (7) and O-ring (8).
2. Grasping flared end of lamp, pull lamp (9) from receptacle (10).

Installation of Dial Window Lamp

1. Push lamp (9) (glass bulb in) into receptacle (10).
2. Screw lamp screw (7) into receptacle (10) on front of RT. Fingertighten.
3-16. RT-246(*)/VRC AND RT-524(*)/VRC. (CONT)

SETTING RT X-MODE/NORMAL SWITCH FOR SECURE COMMUNICATION

TOOLS: Tool Kit, Electronic Equipment TK-101/G

PRELIMINARY PROCEDURE: Remove bottom cover. (See page 3-145)

NOTE

For a test to determine the position of the X-MODE/NORMAL switch, see paragraph 2-16.

1. Using screwdriver, loosen two captive screws (1) on rear of A4000 assembly (2).
2. Raise A4000 assembly (2).
3. Set X-MODE/NORMAL switch (3) to X-MODE position.
4. Lower A4000 assembly (2).
5. Using screwdriver, tighten two captive screws (1),

CAUTION

Do not overtighten screws.

NOTE

For replacement of bottom cover, see page 3-145
3-17. R-442 (*)/VRC.

REMOVAL OF R-442

PRELIMINARY PROCEDURE: Turn RT and R-442 POWER switch to OFF.

CAUTION

Use both guards to pull and then lift receiver to prevent equipment damage.

1. Unscrew thumbscrew (1) to lower clamp (2).
2. Pull receiver (3) forward until rear of receiver (3) is clear of guide pins (4).

CAUTION

Be careful to slide the R-442 straight into (or out of) the MT-1898/VRC. Damage to the radio jack (J14) can occur.

3. Lift receiver (3) from mounting (5).

REPLACEMENT OF R-442

1. Place receiver (3) into mounting (5).
2. Aline receiver (3) with guide pins (4) and push back.
3. Screw thumbscrew (1) until clamp (2) tightens receiver (3) into mounting (5).
3-17. R-442 (*)/VRC. (CONT)

REMOVAL OF BOTTOM COVERS

TOOLS: Tool Kit, Electronic Equipment TK-101/G
MATERIALS/PARTS: Silicone Compound (Item 1, appendix C)
PRELIMINARY PROCEDURE: Remove R-442 from mounting. (See page 3-149)

CAUTION

Do not damage gasket (2) with screwdriver. If gasket is damaged, replace to insure waterproofing protection of junction box.

1. Using screwdriver, loosen six captive screws (1) of bottom cover (3).
2. Remove bottom cover (3).

INSTALLATION OF BOTTOM COVERS

NOTE

All radio components have a preformed gasket that requires lubrication before replacing the cover.

1. Apply thin coat of silicone compound (item 1, appendix C) to gasket (4).

CAUTION

Do not overtighten screws.

2. Put bottom cover (3) in place.
3. Using screwdriver, tighten six captive screws (1).
3-17. R-442 (*)/VRC. (CONT)

SETTING OF X-MODE/NORMAL SWITCH

TOOLS: Tool Kit, Electronic Equipment TK-101/G
PRELIMINARY PROCEDURE: Remove bottom cover. (See page 3-150.)

NOTE

If the receiver is to be used with X-MODE equipment, the receiver is set up for X-MODE. If the receiver is not to be used with X-MODE equipment, the receiver is set up for NORMAL.

1. Using screwdriver, loosen two captive screws (1) on rear of A4000 assembly.
2. Raise A4000 assembly (2).
3. Set X-MODE/NORMAL switch (3) to desired position (X-MODE, (secured) or NORMAL, (nonsecured)).

CAUTION

Do not overtighten screws.

4. Lower A4000 assembly (2).
5. Using screwdriver, tighten two captive screws (1).

NOTE

To replace bottom cover, see page 3-150.

Tag the receiver if it has been set up for X-MODE.
3-17. R-442 (*) VRC. (CONT)

REPLACEMENT OF KNOBS AND LAMPS

TOOLS: Tool Kit. Electronic Equipment TK-101/G

PRELIMINARY PROCEDURE: Turn R-442 POWER switch to OFF.

Removal of Knobs

NOTE

Note position of indicator line on knob when removing. Replace new knob in the same position.

1. Using screwdriver, unscrew screw (1) from knob (2).
2. Pull knob (2) from associated receiver (3) control.

Replacement of Knobs

1. Place knob (2) on associated receiver (3) control.
2. Using screwdriver, tighten screw (1).

Removal of Call Lamp

1. Unscrew and remove lens (4) with lamp (5) and O-ring (6) from R-442 call lamp fixture (11).
2. Pull lamp (5) from lens (4).
3-17. R-442 (*)/VRC. (CONT)

Replacement of Call Lamp

CAUTION

Do not overtighten lens.

1. Push lamp (5) in lens (4).
2. Screw in lens (4) with lamp (5) and O-ring (6) into R-442 (3) call lamp fixture. Fingertighten.

NOTE

Check that O-ring (6) is properly seated around lens.

Removal of Dial Window Lamp

1. Unscrew and remove lamp screw (7) and O-ring (8).
2. Grasping flared end of lamp, pull lamp (9) from receptacle (10).

Replacement of Dial Window Lamp

1. Push lamp (9) (glass bulb) in receptacle (10).
2. Screw lamp screw (7) into receptacle (10) on front of receiver (3). Fingertighten.

3-18. **ANTENNAS.**

DRAINAGE OF WATER FROM MATCHING UNIT MX-6707

TOOLS: Tool Kit, Electronic Equipment TK-101/G

PRELIMINARY PROCEDURE: Turn RT POWER switch to OFF.

1. Using cross-tip screwdriver, remove seal screw (1) from matching unit (2).
2. Drain moisture. (Hold a rag under matching unit (2).)
3. Screw seal screw (1) into matching unit (2) and tighten using cross-tip screwdriver.
3-18. ANTENNAS. (CONT)

AS-1729/VRC

REMOVAL OF MATCHING UNIT MX-6707

TOOLS: Tool Kit, Electronic Equipment TK-101/G

PRELIMINARY PROCEDURE: Turn RT POWER switch to OFF.

1. Remove antenna elements (1). (See removal of antenna elements, page 3-155)
2. Remove control cable (2) and rf cable (3).
3. Using 7/16-inch wrench, remove ground strap bolt (4).
4. Remove two star washers (5) and ground strap (6).

5. Using 1/2-inch wrench, remove mounting nuts (7) and lockwashers (8) from four bolts (9).
6. Remove MX-6707 (10) from mounting bracket (11).

NOTE

For installation of elements, see paragraph 2-9
3-18. ANTENNAS. (CONT)

Removal of Antenna Elements AS-1730 and AT-1095

TOOLS: Tool Kit, Electronic Equipment TK-101/G
PRELIMINARY PROCEDURE: Turn RT POWER switch to OFF.

1. Untie tiedown ropes (1) from vehicle tiedown points.
2. Remove safety wire (2) from AS-1730 (3) and MX-6705 spring assembly (2).
3. Unscrew lower element (3) from matching unit spring assembly (2).
4. Unscrew upper element (5) from AS-1730 (3).
5. Remove tiedown assembly (6) and tip cap (7').

NOTE

For installation of antenna elements, see paragraph 2-9.
3-18. ANTENNAS. (CONT)

AT-912/VRC

Removal of Antenna Elements AT-1095 and AT-1096

TOOLS: Tool Kit, Electronic Equipment TK-101/G
PRELIMINARY PROCEDURE: Turn RT POWER switch to OFF.

1. Untie tiedown ropes (1) from vehicle tiedown points.
2. Remove safety wire (2) from AT-1096 (3) and AB-719 (2).
3. Unscrew lower element (3) from AB-719 (2).
4. Unscrew upper element (5) from lower element (3).
5. Remove tiedown assembly (6) and tip cap (7) from upper element (5).

NOTE
For installation of antenna elements, see paragraph 2-9.
3-18. ANTENNAS. (CONT)

Removal of Matching Unit MX-2799

TOOLS: Tool Kit. Electronic Equipment TK-101/G
PRELIMINARY PROCEDURE: Turn RT POWER switch to OFF.
Remove antenna elements. (See page 3-156)

1. Remove control cable (1) and rf cable (2) from MX-2799 (3).
2. Using 7/16-inch wrench, unscrew and remove six mounting bolts (4) and star washers (5) from vehicle mounting bracket (6) while holding MX-2799 (3).
3. Remove matching unit from vehicle mounting bracket (6).

NOTE

For installation of MX-2799, see paragraph 2-9
3-8. ANTENNAS. (CONT)

AUXILIARY RECEIVER ANTENNA

Removal of Antenna Elements MS-116, MS-117, and MS-118

MATERIALS/PARTS: Silicone compound (item 1, appendix C)
Antenna element AT-1095/VRC NSN 5820-00-656-2728
PRELIMINARY PROCEDURE Turn RT and R-442 POWER switches to OFF.

NOTE When one or more of the antenna elements (MS-116, MS-117 or MS-118) break, replace all the antenna elements with Antenna Element AT-1095/VRC.

1. Untie antenna tiedown assembly (l).
2. Unscrew bottom element (2) from antenna base (3).
3. Unscrew middle element (4) from bottom element (2).
4. Unscrew top element (5) from middle element (4).
5. Remove tip cap (6) and antenna tiedown (1) from top element.

Replacement of Antenna Elements MS-116, MS-117, and MS-118 with Antenna Element AT-1095/VRC

1. Apply thin coat of silicone compound (item C, appendix C) to threads (8) of AT-1095/VRC (7).
2. Screw AT-1095/VRC (7) into antenna base (3).

NOTE For installation of Antenna Elements MS-116, MS-117, and MS-118, see paragraph 2-10.
3-18. ANTENNAS. (CONT)
REMOVAL OF BASE AB-15/GR

PRELIMINARY PROCEDURE: Turn receiver POWER switch to OFF.
Remove elements. (See page 3-158.)

1. Unplug rf cable (7) on Adaptor UG-306 (6) from Adaptor UG-273/U (l).
2. Unscrew support (8) from lower insulator stud (9). Set upper insulator (5) and aside.
3. Slide grounding ring (10) off lower insulator (4).
4. Loosen grounding clamp (3) and slide it off Adaptor UG-273/U (l).
5. Unscrew and remove Adaptor UG-273/U (1) from AB-15 jack (2).

NOTE
For installation, see paragraph 2-10.

REMOVAL OF AB-558/GR

TOOLS: Tool Kit, Electronic Equipment TK-101/G

PRELIMINARY PROCEDURE: Turn RT switches to OFF.
Remove antenna elements (See page 3-185.)

1. Unplug rf cable (12) or Adaptor UG-306/U (11) (if used) from Adaptor UG-273/U (2).
2. Using 7/16-inch wrench, unscrew and remove ground strap nut (9), star washers (8), and ground strap lug (13) from grounding bolt (10).
Loosen grounding clamp (1) and slide It off Adaptor UG-273/U (2).
3-18. ANTENNAS. (CONT)

REMOVAL OF AB-558/GR (CONT)

4. Unscrew and remove Adaptor UG-273/U (2) from the AB-558 (6) jack.
5. Using 1/2-inch wrench, unscrew and remove mounting nuts (5), and star washers (4) from four bolts (3).

NOTE

For installation, see paragraph 2-10, page 2-32

REMOVAL OF ANTENNA TIP CAP

TOOLS: Tool Kit TK-101/G
PRELIMINARY PROCEDURE: Turn RT POWER switch to OFF.

1. Using knife, cut tape (1) from around antenna element (2) which attaches tip cap (3) to antenna element (2).
2. Pull tip cap (3) from antenna element (2).
3. Cut remaining tape (1) from antenna element (2).

NOTE

For installation, see paragraph 2-10

3-19. MT-1029/VRC AND MT.1898/VRC.

REMOVAL AND REPAIR OF TERMINAL BOARD

TOOLS: Tool Kit, Electronic Equipment TK-101/G

WARNING

Disconnect Power Cable CX-4720 from vehicle's batteries before removing a mount's J-box cover. Extreme electrical hazards exist within the J-box that could cause death.

PRELIMINARY PROCEDURE: Disconnect CX-4720 from vehicle battery.
3-19. MT.1029/VRC AND MT-1898/VRC. (CONT)

Removal

1. Using screwdriver, loosen six captive screws (1) and lift cover (2) off J-box (9).
2. Using screwdriver, unscrew and remove screw (3), lockwasher (4) and flat washer (5) from terminal board (6).
3. Insert screwdriver behind terminal board (6) and pry up from underneath.

CAUTION

Do not apply excessive pressure on terminal board (6).

4. inspect wires (7) and their connections. Solder if needed.

NOTE

Solder connections in accordance with TB-SIG-222.

Replacement

1. Insert tabs of terminal board (6) between slots inside front of J-box (9).
2. Insert screw (3), lockwasher (4) and flat washer (5) through terminal board (6) and tighten.
3. Place cover (2) into position.

CAUTION

For older models, insure fuse lugs are lined up with terminal board holes while replacing cover.
3-19. MT-1029/VRC AND MT-1898/VRC. (CONT)

REMOVAL OF TOP TRAY

This procedure applies for both the MT-1029/VRC and the MT-1898/VRC. (The procedure for the MT-1029/VRC is shown.)

NOTE

The MT-1029/VRC has five mounting screws; the MT-1898/VRC has four mounting screws.

TOOLS: Tool Kit, Electronic Equipment TK-101/G

PRELIMINARY PROCEDURE: Remove RT or aux receiver from mounting. (See paragraphs 3-16 or 3-17.)

1. Using screwdriver, unscrew screw (1) and lockwasher (2) from top tray (3).
2. Remove ground strap (4) from top tray (3).
3. Using 1/2-inch wrench, unscrew and remove five bolts (5) and five flat washers (6).
4. Remove top tray (3) from its base (7).

REPLACEMENT OF TOP TRAY

NOTE

Isolator assembly caps must be positioned as shown.

1. Put toe tray (3) in place on base assembly (7).
2. Using 1/2-inch wrench, secure five bolts (5) and flat washers (6). Tighten until snug.
3. Using screwdriver, secure ground strap (4), star washer (2) and screw (1).
4. Replace RT or receiver in mounting. (See paragraph 2-11 for RT and paragraph 2-14 for receiver.)

3-162
3-19. MT.1029/VRC AND MT.1898/VRC. (CONT)

REMOVAL OF SHOCK ABSORBERS

TOOLS: Tool Kit, Electronic Equipment TK-101/G
PRELIMINARY PROCEDURE: Remove top tray. (See page 3-162)

1. Hold nuts (1) with wrench and unscrew four screws (2) with screwdriver.
2. Remove shock absorber (3) from base assembly (4).
3. Repeat steps 1 and 2 for all shock absorbers (3).

REPLACEMENT OF SHOCK ABSORBER

1. Aline mounting holes on shock absorber (3) and base assembly (4).
2. Insert four screws (2) through bottom of base assembly (4).
3. Place nuts (1) onto screws (2).
4. Hold nuts (1) with wrench and tighten screws (2).
5. Repeat steps 1 through 4 for all shock absorbers (3).
6. Replace top tray. (See page 3-162)
3-20. RADIO RELAY BOX C-2299/VRC.

REMOVAL OF CONTROL BOX C-2299

TOOLS: Tool Kit, Electronic Equipment TK-101/G
PRELIMINARY PROCEDURE: Turn power to OFF.
 Disconnect cables,

1. Using wrench, loosen and remove two bolts (1) and lockwashers (2),
2. Remove C-2299 (3) from mounting surface.

REPLACEMENT OF CONTROL BOX C-2299

1. Aline mounting lugs (6) with hole in mounting surface (4).
2. Insert two bolts (1) through lockwashers (2).
3. Tighten with wrench.

REMOVAL OF MICROPHONE AMPLIFIER MODULE A80

TOOLS: Tool Kit, Electronic Equipment TK-101/G
PRELIMINARY PROCEDURE: Turn power to OFF.
 Disconnect cables.
 Remove unit from mounting area, (See removal of C-2299 above,)

1. Unscrew four captive screws (1) and lockwashers (2).
2. Remove cover (3).
3. Loosen two captive screws (4) which retain bracket so that A80 assembly (5) can be lifted to clear the back of the box (9).
3-20. RADIO RELAY BOX C-2299/VRC. (CONT)

4. Carefully remove A80 amplifier assembly (5).

REPLACEMENT OF MICROPHONE AMPLIFIER MODULE A80

1. Check to see if rubber pad (6) is glued to stud (7) inside box (9) behind A80 assembly. If not, put in place.
2. Position A80 assembly (5) so that its pins align with pins of jack (8).
3. Press A80 assembly (5) into place.
4. Hold A80 bracket in position and tighten two captive bracket-retaining screws (4).
5. Check to see if rubber pad (10) and preformed packing (11) are attached to rear cover (3). If not, put in place.
6. Apply a light coating of silicon compound (item 1, appendix C) to the preformed packing (11). Position cover (3) so its holes align with guide pins (12) and press into place.
7. Tighten four captive screws (1).
8. Replace control box (9). (See page 3-164)
9. Connect cables, (See cabling diagram, paragraph 2-13).

REMOVAL OF KNOB

TOOLS: Tool Kit, Electronic Equipment TK-101/G
PRELIMINARY PROCEDURE: Turn power to OFF.

NOTE

Note the position of the knob before removal.

1. Using screwdriver, loosen and remove screw (1) from knob (2).
2. Pull knob (2) from C-2299 (3).

REPLACEMENT OF KNOB

1. Place knob (2) on shaft (4) in same position noted.
2. Insert screw (1) through knob (2).
3. Tighten with screwdriver.
3-21. REMOTE CONTROL BOX C-2742/VRC.

REMOVAL OF REMOTE CONTROL BOX C-2742/VRC (FROM MOUNTING SURFACE)

Control Box C-2742 is mounted two ways. It can be mounted on a control box or on a flat surface.

TOOLS: Tool Kit, Electronic Equipment TK-101/G
PRELIMINARY PROCEDURE: Turn power to OFF.
 Disconnect cables.

1. Using wrench, remove two bolts (1) and lockwashers (2).
2. Remove C-2742 (3) from mounting surface or C-2299 (4).

REPLACEMENT OF REMOTE CONTROL BOX C-2742/VRC

1. Aline mounting lug holes (5) in mounting surface or C-2299 (4).
2. Insert two bolts (1) and lockwashers (2).
3. Tighten with wrench.
3-21. REMOTE CONTROL BOX C-2742/VRC. (CONT)

REMOVAL OF KNOB

TOOLS Tool Kit, Electronic Equipment TK-101/G
PRELIMINARY PROCEDURE: Turn power to OFF.

NOTE

Note the position of the knob before removal.

1. Using screwdriver, loosen and remove screw (1) from knob (2).
2. Pull knob (2) from C-2742 (3).

REPLACEMENT OF KNOB

1. Place knob (2) on shaft (4) in same position noted.
2. Insert screw (1) through knob (2).
3. Tighten with screwdriver.
3-22. CABLES.

Cables are to be tested if troubleshooting finds a problem with them. Cable repair is limited to testing, resoldering of wires separated from plug terminals, and the replacement of plugs. If it is established during testing that your cable has a wire with a short or a break in the middle of it, the cable should be replaced.

TESTING FOR CONTINUITY (ADVERSE OPENS)

NOTE

If troubleshooting has indicated a certain pin connection is faulty, test that pin first.

TOOLS: Tool Kit, Electronic Equipment TK-101/G

Multimeter AN/USM-223 or equivalent

PRELIMINARY PROCEDURE: Remove cable from unit.

1. Set multimeter (1) to Rx1.
2. Connect two leads (2) together and zero the multimeter (1).
3. Separate test leads (2).
4. Connect a test lead (2) to pin of plug (3) to be tested.
5. Connect other test lead (2) to corresponding pin of other plug (3). (See cable schematics for wiring of cables and plugs.)
6. Multimeter (1) should read zero ohms.

NOTE

If the multimeter (1) does not read zero ohms, check plug for bad pins or loose pin connections.
3-22. CABLES. (CONT)

TESTING FOR ADVERSE SHORTS

1. Set multimeter (1) to Rx1.
2. Connect two test leads (2) together and zero the multimeter (1).
3. Separate test leads (2).
4. Connect a test lead (2) to pin of plug (3) to be tested.
5. Connect a test lead (2), one at a time, to each pin of the plug and the outer casing or ground pin of the plug (3). (See cable schematics for wiring of cables and plugs.)
6. Multimeter should read infinity (∞).

NOTE

If the multimeter (1) does not read ∞, check plugs for shorted pins.

Pin A is standard ground of most cable plugs in the system.
REPAIR OF CABLES

1. Using spanner wrench, remove locknut (1) from plug housing (2).
2. Using wrench, loosen gland nut (3) and slide gland nut (3) and rubber gland (4) along cable (8).
3. Pull plug (5) from plug housing (2) while pushing cable (8) into housing (2).
4. Check for loose or broken wire connections.

NOTE
Check for shorting between adjacent pins, using ohmmeter.

5. Resolder any wire (6) that is disconnected from its pin (7).

NOTE
Refer to wiring diagrams as listed on page 3-171 for details covering wire connections and proper color coding.

Before soldering or resoldering, be familiar with TB-SiG-222.

6. Test for continuity again. (See page 3-168)
7. Push plug (5) into plug housing (2) while pulling gently on cable (8).
8. Using spanner wrench, install locknut (1) into plug housing (2).
9. Pull cable (8) to eliminate slack in plug housing (2).
10. Insert gland (4) into plug housing (2).
11. Install gland nut (5) into plug housing and tighten with wrench.
3-22. CABLES. (CONT)

CABLE SCHEMATICS

<table>
<thead>
<tr>
<th>Cable</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG-1127/U</td>
<td>3-171</td>
</tr>
<tr>
<td>CG-1773A/B/U</td>
<td>3-171</td>
</tr>
<tr>
<td>CX-4720/VRC</td>
<td>3-172</td>
</tr>
<tr>
<td>CX-4721/VRC</td>
<td>3-173</td>
</tr>
<tr>
<td>CX-4722/VRC</td>
<td>3-174</td>
</tr>
<tr>
<td>CX-4723/VRC</td>
<td>3-175</td>
</tr>
<tr>
<td>CX-7059/VRC</td>
<td>3-176</td>
</tr>
</tbody>
</table>

CG-1127/U

![Diagram of CG-1127/U](image)

CG-1773A, B/U

![Diagram of CG-1773A, B/U](image)
3-22. CABLES. (CONT)

CX-4720/VRC
3-22. CABLES. (CONT)

CX-4721/VRC

LENGTH (AS REQUIRED)

P1

BLACK

WHITE

RED

GREEN

P2

TO MT-1029/VRC
(J23) OR
MT-1898/VRC (J13)

TO MT-1029/VRC
(J21) OR
MT-1898/VRC (J11)

ELBNZ103
3-22. CABLES. (CONT)

CX-4722/VRC

LENGTH (AS REQUIRED)

P1

BLACK
A
WHITE
B
RED
C
GREEN
D
ORANGE
E
BLUE
F
WHITE-BLACK
G
RED-BLACK
H
GREEN-BLACK
J
ORANGE-BLACK
K
BLUE-BLACK
L
BLACK-BLACK
M
BLACK-WHITE
N

TO RT ANT
CONT JACK

TO ANTENNA
MATCHING UNIT
CONTROL JACK OR
CX 13055 OR
CX 13089 MALE PIN PLUG
3-22. CABLES. (CONT)

CX-4723/VRC
3-22. CABLES. (CONT)

CX-7059/VRC

LENGTH (AS REQUIRED)

P1

BLACK
WHITE
RED
GREEN
ORANGE
BLUE
WHITE/BLACK
RED/BLACK
BLUE/WHITE
GREEN/BLACK
ORANGE/BLACK
BLACK/RED
BLUE/BLACK
BLACK/WHITE
RED/WHITE
GREEN/WHITE
WHITE/RED
ORANGE/RED

P2

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V

TO RT-246(*)/VRC REMOTE JACK

TO C-2742/VRC (J71)
3-23. GENERAL.

This section provides procedures for repacking components of the AN/VRC-12 radio sets. Before repacking, the next scheduled PMCS should be performed, all known problems corrected, and all current Modification Work Orders (MWO'S) applied.

3-24. ADMINISTRATIVE STORAGE.

Administrative storage refers to storage from 1 to 45 days.

TOOLS: Tool Kit, Electronic Equipment TK-101/G
MATERIALS: Shipping cartons

PACKING

1. Secure dust covers on equipment jacks.
2. Place radio set component (1) (RT illustrated) in carton (2).
3. Arrange fiberboard pads (3) as shown.
4. Replace equipment manuals (4).
5. Close flaps (5) and seal carton with tape (6).

NOTE

Carton must be marked with nomenclature, model identification, and serial number of radio component.

Place carton in secure storage area.
3-25. INTERMEDIATE STORAGE.

Intermediate storage means storage between 46 and 180 days.

TOOLS: Hammer
MATERIALS: Shipping cartons and box
Waterproof barrier wrap
PRELIMINARY PROCEDURE: Pack equipment as for administrative storage, (See paragraph 3-24)

PACKING

1. Place waterproof barrier wrap (1) around equipment carton (2) and seal.
2. Place equipment carton in outer carton (3).
3. Place waterproof barrier wrap (4) around outer carton and seal.
4. Place outer carton in box (5) and nail box cover (6) to top of box.

NOTE

Box must be marked with nomenclature, model identification, and serial number of radio component.

Place box in secure storage area.

3-26. FLYABLE STORAGE.

Flyable or long-term storage is for more than 180 days. The packing and storage procedure is the same as intermediate storage. (See paragraph 3-25)
APPENDIX A

REFERENCES

A-1. SCOPE.

The following is a list of all pamphlets, forms, service bulletins, and technical manuals referenced in or related to this manual.

A-2. PAMPHLETS.

Consolidated Index of Army Publications and Blank Forms DA Pam 310-1
The Army Maintenance Management System (TAMMS) DA Pam 738-750

A-3. FORMS.

Recommended Changes to Publications and Blank Forms DA FORM 2028
Recommended Changes to Equipment Technical Manuals DA FORM 2028-2
Equipment Inspection and Maintenance Worksheet DA FORM 2404
Discrepancy in Shipment Report (DISREP) SF 361
Report of Discrepancy (ROD) .. SF 364
Quality Deficiency Report .. SF 368

A-4. SERVICE AND TECHNICAL BULLETINS.

Vehicular Radio Sets and Authorized Installations SB 11-131
Painting and Preservation Supplies Available for Field Use
 for Electronics Command Equipment SB 11-573
Blower Cover FSN 5820-K98-4055 for Mounting MT-1029/VRC............. SE 11-586
Warning Notice for Vehicles in Which Radios are Mounted SE 11-624
Field Instructions for Painting and Preserving Electronics Command
 Equipment, Including Camouflage Pattern Painting of Electrical
 Equipment Shelters ... TB 43-0118

A-5. TECHNICAL MANUALS.

Operator’s and Organizational Maintenance for Communications
 Security Equipment TSEC/KE-57 TM 11-5810-258-12
Operator’s and Organizational, Direct Support and General Support
 Maintenance Manual for Installation Kits, Electronic Equipment
 Used with Communications Security Equipment TSEC/KY-38
 and HYL-3/TSEC .. TM 11-5810-290-14&P
Operator’s and Organizational Maintenance Manual for NESTOR
 Communications Systems Using TSEC/KY-8 and TSEC/KY-38 with
 Radio Sets and Associated Equipment TM 11-5810.300-12
Operator’s and Organizational Maintenance Manual: Installation
 Kits for Communications Security Equipment TSEC/KY-57 TM 11-5810-312-12
A-5. TECHNICAL MANUALS. (CONT)

Operator’s Manual: Radio Sets AN/VRC-12 (NSN 5820-00-223-7412), AN/VRC-43 (5820-00-223-741 5), AN/VRC-44 (5820-00-223-7417), AN/VRC-45 (5820-00-223-7418), AN/VRC-46 (5820-00-223-7433), AN/VRC-47 (5820-00-223-7434), AN/VRC-48 (5820-00-223-7435), and AN/VRC-49 (5820-00-223-7437) (used without Intercom System) ... TM 11-5820-401 -10-1

Hand Receipt Technical Manual Covering End Item/Components of End Item (COEI).
Basic Issue Items, and Additional Authorization List (AAL) for Radio Sets AN/VRC-12 (NSN 5820-00-223-7412), AN/VRC-43 (5620-00-223-7415), AN/VRC-44 (5820-00-223-7417), AN/VRC-45 (5820-00-223-7418), AN/VRC-46 (5820-00-223-7433), AN/VRC-47 (5820-00-223-7434), AN/VRC-48 (5820-00-223-7435), and AN/VRC-49 (5820-00-223-7437), (used without Intercom System) ... TM 11-5820-401-10-1-HR

Direct Support, General Support and Depot Maintenance Manual Including Repair Parts and Special Tools Lists: Control, Frequency Selector C-2742/VRC and Control, Radio Set C-2299/VRC .. TM 11-5820-401-35-1

Direct Support, General Support and Depot Maintenance Manual Including Repair Parts and Special Tools Lists: Mounting MT-1029/VRC (FSN 5820-893-1323) and Mounting MT-1898/VRC (FSN 5820-893-1324) .. TM 11-5620-401-35-9

Operator’s, Organizational, Field and Depot Maintenance Repair Parts and Special Tool Lists: Headset, Electrical H-140A/U ... TM 11-5965-269-15P

A-2 Change 1
A-5. TECHNICAL MANUALS. (CONT)

Operator’s, Organizational, Direct Support, General Support, and Depot Maintenance Manual: Antenna AS-1729/VRC
(NSN 5985-00-985-9024) ... TM 11-5985-262-14

Operator’s, Organizational and Direct Support Maintenance Manual for Antenna Group OE-254/GRC
(NSN 5985-01-063-1574) ... TM 11-5985-357-" 3

Operator’s, Organizational, and Direct Support Maintenance Manual: Antenna AS-2731/GRC (NSN 5985-01-017-0785) TM 11-5985-355-" 3

Administrative Storage of Equipment .. TM 740-90-1

Procedures for Destruction of Electronics Materiel to Prevent Enemy Use (Electronics Command) ... TM 750-244-2

A-6. MISCELLANEOUS PUBLICATIONS.

Tool Kit, Electronic Equipment TK-101/G
(NSN 5160-00-064-5178) .. SC 5180-91-CL-R13

Operator and Organizational Maintenance: Multimeter
AN/URM-105, Including Multimeter ME-77/U .. TM 11-6625-203-12
APPENDIX B

MAINTENANCE ALLOCATION

Section I INTRODUCTION

B-1. GENERAL.

This appendix provides a summary of maintenance operations for the AN/VRC-12 series radio sets. It authorizes categories of maintenance for specific maintenance functions on repairable items and components and the tools and equipment required to perform each function. This appendix may be used as an aid in planning maintenance operations.

B-2. MAINTENANCE FUNCTIONS.

Maintenance functions will be limited to and defined as follows:

a. Inspect. To determine the serviceability of an item by comparing its physical, mechanical, and/or electrical characteristics with established standards through examination.

b. Test. To verify serviceability by measuring the mechanical, pneumatic, hydraulic or electrical characteristics of an item and comparing those characteristics with prescribed standards.

c. Service. Operations required periodically to keep an item in proper operating condition, i.e., to clean (includes decontaminate, when required), to preserve, to drain, to paint, or to replenish fuel, lubricants, chemical fluids, or gases.

d. Aline. To adjust specified variable elements of an item to bring about optimum or desired performance.

e. Install. To install an item when required to perform service or other maintenance functions. Install may be the act of emplacing, seating, or fixing into position a spare, repair part, or module (component or assembly) in a manner to allow the proper functioning of an equipment or system.

f. Replace. To substitute serviceable like-type part subassembly or module (component or assembly) for an unserviceable counterpart.

g. Repair. To apply maintenance services (inspect, test, service, adjust, aline, calibrate, replace) or other maintenance actions (welding, grinding, riveting, straightening, facing, remachining, or resurfacing). To restore serviceability to an item by correcting specific damage, fault, malfunction or failure in part, subassembly, module (component or assembly), end item or system.

h. Overhaul. To restore an item to a completely serviceable/operational condition as required by maintenance standards in appropriate technical publications (i.e., DMWR). Overhaul is normally the highest degree of maintenance performed by the Army. Overhaul does not normally return an item to like-new condition.
B-3. COLUMN ENTRIES.

a. Column 1, Group Number. Column 1 lists group numbers, the purpose of which is to identify components, assemblies, subassemblies, and modules with the next higher assembly.

b. Column 2, Component/Assembly. Column 2 contains the noun names of components, assemblies, subassemblies, and modules for which maintenance is authorized.

c. Column 3, Maintenance Function. Column 3 lists the functions to be performed on the item listed in column 2. When items are listed without maintenance functions, it is solely for the purpose of having the group numbers in the MAC and RPSTL coincide.

d. Column 4, Maintenance Category. Column 4 specifies, by the listing of a worktime figure in the appropriate subcolumn(s), the lowest level of maintenance authorized to perform the function listed in column 3. This figure represents the active time required to perform that maintenance function at the indicated category of maintenance. If the number or complexity of the tasks within the listed maintenance function varies at different maintenance categories, appropriate worktime figures will be shown for each category. The number of task-hours specified by the worktime figure represents the average time required to restore an item (assembly, subassembly, component, module, end item, or system) to a serviceable condition under typical field operating condition. This time includes preparation time, troubleshooting time, and quality assurance/quality control time in addition to the time required to perform the specific tasks identified for the maintenance functions authorized in the maintenance allocation chart. Subcolumns of column 4 are as follows:

- C - Operator/Crew
- O - Organizational
- F - Direct Support
- H - General Support
- D - Depot

e. Column 5, Tools and Eqpt. Column 5 specifies by code those common tool sets (not individual tools) and special tools, test, and support equipment required to perform the designated function.

f. Column 6, Remarks. Column 6 contains an alphabetic code which leads to the remark in section IV, Remarks, which is pertinent to the item opposite the particular code.

B-4. TOOL AND TEST EQUIPMENT REQUIREMENTS.

a. Tool or Test Equipment Reference (Ref) Code. The numbers in this column coincide with the numbers used in the tools and equipment column of the MAC. The numbers indicate the applicable tool or test equipment for the maintenance functions.

b. Maintenance Category. The codes in this column indicate the maintenance category allocated to the tool or test equipment.
B-4. TOOL AND TEST EQUIPMENT REQUIREMENTS. (CONT)

c. Nomenclature. This column lists the noun name and nomenclature of the tools and test equipment required to perform the maintenance functions.

d. National/NATO Stock Number. This column lists the national/NATO stock number of the specific tool or test equipment.

e. Tool Number. This column lists the manufacturer’s part number of the tool followed by the Federal Supply Code for Manufacturers (FSCM) (5-digit) in parentheses.

B-5. REMARKS.

a. Reference Code. This code refers to the appropriate item in section II, column 6.

b. Remarks. This column provides the required explanatory information necessary to clarify items in section II.
Section II MAINTENANCE: ALLOCATION CHART

RADIO SET AN/VRC-12

<table>
<thead>
<tr>
<th>GROUP NUMBER</th>
<th>COMPONENT/ASSEMBLY</th>
<th>MAINTENANCE FUNCTION</th>
<th>MAINTENANCE CATEGORY</th>
<th>TOOLS AND EQPT</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>RADIO SET AN/VRC-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>RECEIVER-TRANSMITTER, RADIO RT-246/VRC; RT-246A/VRC (See Sect XI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>RECEIVER, RADIO R-442/VRC; R-442A/VRC (See Sect XIII)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>ANTENNA AS-1729/VRC or equivalent (See Separate MAC in TM 11-5985-262-14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section III MAINTENANCE ALLOCATION CHART

RADIO SET AN/VRC-43

<table>
<thead>
<tr>
<th>(1) GROUP NUMBER</th>
<th>(2) COMPONENT/ASSEMBLY</th>
<th>(3) MAINTENANCE FUNCTION</th>
<th>(4) MAINTENANCE CATEGORY</th>
<th>(5) TOOLS AND EQPT</th>
<th>(6) REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>RADIO SET AN/VRC-43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>RECEIVER-TRANSMITTER, RADIO RT-246/VRC; RT-246A/VRC (See Sect XI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>ANTENNA AS-1729/VRC or equivalent (See Separate MAC in TM 11-5985-262-1 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section IV MAINTENANCE ALLOCATION CHART

RADIO SET AN/VRC-44

<table>
<thead>
<tr>
<th>GROUP NUMBER</th>
<th>COMPONENT/ASSEMBLY</th>
<th>MAINTENANCE FUNCTION</th>
<th>MAINTENANCE CATEGORY</th>
<th>TOOLS AND EQPT</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>RADIO SET AN/VRC-44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>RECEIVER-TRANSMITTER, RADIO RT-246/VRC; RT-246A/VRC (See Sect XI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>RECEIVER, RADIO R-442/VRC; R-442A/VRC (See Sect XIII)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>ANTENNA AS-1729/VRC or equivalent (See Separate MAC in TM11-5985-262-14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section V MAINTENANCE ALLOCATION CHART

RADIO SET AN/VRC-45

<table>
<thead>
<tr>
<th>GROUP NUMBER</th>
<th>COMPONENT/ASSEMBLY</th>
<th>MAINTENANCE FUNCTION</th>
<th>MAINTENANCE CATEGORY</th>
<th>TOOLS AND EQPT</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>RADIO SET AN/VRC-45</td>
<td></td>
<td></td>
<td></td>
<td>B-7</td>
</tr>
<tr>
<td>01</td>
<td>RECEIVER-TRANSMITTER, RADIO RT-246/VRC; RT-246A/VRC (See Sect XI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>ANTENNA AS-1729/VRC or equivalent (See Separate MAC in TM II-5985-262-1 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GROUP NUMBER</td>
<td>COMPONENT/ASSEMBLY</td>
<td>MAINTENANCE FUNCTION</td>
<td>(4) MAINTENANCE CATEGORY</td>
<td>(5) TOOLS AND EQPT</td>
<td>REMARKS</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>--------------------</td>
<td>---------</td>
</tr>
<tr>
<td>00</td>
<td>RADIO SET AN/VRC-46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>RECEIVER-TRANSMITTER, RADIO RT-524/VRC; RT-524A/VRC (See Sect XII)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>ANTENNA AS-1729/VRC or equivalent (See Separate MAC in TM II-5985-262-14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section VII MAINTENANCE ALLOCATION CHART
FOR
RADIO SET AN/VRC-47

<table>
<thead>
<tr>
<th>(1) GROUP NUMBER</th>
<th>(2) COMPONENT/ASSEMBLY</th>
<th>(3) MAINTENANCE FUNCTION</th>
<th>(4) MAINTENANCE CATEGORY</th>
<th>(5) TOOLS AND EQPT</th>
<th>(6) REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>RADIO SET AN/VRC-47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>RECEIVER-TRANSMITTER, RADIO RT-524/VRC; RT-524A/VRC (See Sect XII)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>RECEIVER, RADIO R-442/VRC; R-442A/VRC (See Sect XIII)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>ANTENNA AS-1729/VRC or equivalent (See Separate MAC in TMII-5985-262-14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section VIII MAINTENANCE ALLOCATION CHART

RADIO SET AN/VRC-48

<table>
<thead>
<tr>
<th>(1) GROUP NUMBER</th>
<th>(2) COMPONENT/ASSEMBLY</th>
<th>(3) MAINTENANCE FUNCTION</th>
<th>(4) MAINTENANCE CATEGORY</th>
<th>(5) TOOLS AND EQPT</th>
<th>(6) REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>RADIO SET AN/VRC-48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>RECEIVER-TRANSMITTER, RADIO RT-524/VRC; RT-524A/VRC (See Sect XII)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>RECEIVER, RADIO R-442/VRC; R-442A/VRC (See Sect XIII)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>ANTENNA AS-1729/VRC or equivalent (See Separate MAC in TMI 5985-262-14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section IX MAINTENANCE ALLOCATION CHART
FOR
RADIO SET AN/VRC-49

<table>
<thead>
<tr>
<th>(1) GROUP NUMBER</th>
<th>(2) COMPONENT/ASSEMBLY</th>
<th>(3) MAINTENANCE FUNCTION</th>
<th>(4) MAINTENANCE CATEGORY</th>
<th>(5) TOOLS AND EQPT</th>
<th>(6) REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>RADIO SET AN/VRC-49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>RECEIVER-TRANSMITTER, RADIO RT-524/VRC; RT-524A/VRC (See Sect XII)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>ANTENNA AS-1729/VRC or equivalent (See Separate MAC in TMII-5985-262-14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section X MAINTENANCE: ALLOCATION CHART
FOR
RADIO SET AN/VRC-54

<table>
<thead>
<tr>
<th>(1) GROUP NUMBER</th>
<th>(2) COMPONENT/ASSEMBLY</th>
<th>(3) MAINTENANCE FUNCTION</th>
<th>(4) MAINTENANCE CATEGORY</th>
<th>(5) TOOLS AND EQPT</th>
<th>(6) REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>RADIO SET AN/VRC-54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>RECEIVER-TRANSMITTER, RADIO RT-524/VRC; RT-524A/VRC (See Sect XII)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>ANTENNA AS-1729/VRC or equivalent (See Separate MAC in TM 11-5985-262-14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>RADIO SET AN/VRC-24, ANIVRC-24A (See Separate MAC in TM 11-5920-222-20)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section XI MAINTENANCE ALLOCATION CHART
FOR RECEPTOR–TRANSMITTER, RADIO
RT–246A/VRC

<table>
<thead>
<tr>
<th>(1) GROUP NUMBER</th>
<th>(2) COMPONENT/ASSEMBLY</th>
<th>(3) MAINTENANCE FUNCTION</th>
<th>(4) MAINTENANCE CATEGORY</th>
<th>(5) TOOLS AND EQPT</th>
<th>(6) REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>RECEIVER–TRANSMITTER, RADIO</td>
<td>Inspect</td>
<td>0.5</td>
<td>0.5</td>
<td>See Sect XIV</td>
</tr>
<tr>
<td></td>
<td>RT–246A/VRC</td>
<td>Test</td>
<td>0.5</td>
<td>1</td>
<td>1 thru 6</td>
</tr>
<tr>
<td></td>
<td>SM–D–413501</td>
<td>Test</td>
<td>1.0</td>
<td>1.5</td>
<td>7 thru 23</td>
</tr>
<tr>
<td></td>
<td>DL–SM–B–413500</td>
<td>Test</td>
<td>0.5</td>
<td>1</td>
<td>7 thru 23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Service</td>
<td>2.5</td>
<td>1</td>
<td>7 thru 23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Align</td>
<td>0.4</td>
<td>1</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Install</td>
<td>0.3</td>
<td>1</td>
<td>1 AE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>3.0</td>
<td>3.5</td>
<td>7 thru 23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.3</td>
<td>3.5</td>
<td>7 thru 23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overhaul</td>
<td>5.0</td>
<td>5.0</td>
<td>24 thru 49,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>101 thru 132, 201,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>thru 223</td>
<td></td>
</tr>
<tr>
<td>0101</td>
<td>Control Assy (Front Panel Group) (A300)</td>
<td>Test</td>
<td>0.5</td>
<td>1</td>
<td>7 thru 13</td>
</tr>
<tr>
<td></td>
<td>SM–D–414366</td>
<td>Repair</td>
<td>0.3</td>
<td>1</td>
<td>7 thru 9,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td>1</td>
<td>7 thru 9,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>2.0</td>
<td>2.0</td>
<td>33, 47, 130,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>131, 132, 219</td>
<td></td>
</tr>
<tr>
<td>010101</td>
<td>VHF Tuner Assy (A1000) SM–D–416345</td>
<td>Test</td>
<td>0.2</td>
<td>1</td>
<td>7 thru 9,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td>1</td>
<td>7 thru 9,</td>
</tr>
<tr>
<td>01010101</td>
<td>Tuner, VHF (A1000) SM–D–188980</td>
<td>Test</td>
<td>0.5</td>
<td>1</td>
<td>7 thru 9,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td>1</td>
<td>8 thru 9,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td>1</td>
<td>8 thru 9,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28, 33, 35, 43, 44,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45, 128, 129</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>132, 203, 221</td>
<td></td>
</tr>
</tbody>
</table>

Change 3 B-13
MAINTENANCE ALLOCATION CHART

FOR

RECEIVER–TRANSMITTER, RADIO

RT-246A/VRC (CONT)

<table>
<thead>
<tr>
<th>(1) GROUP NUMBER</th>
<th>(2) COMPONENT/ASSEMBLY</th>
<th>(3) MAINTENANCE FUNCTION</th>
<th>(4) MAINTENANCE CATEGORY</th>
<th>(5) TOOLS AND EQPT</th>
<th>(6) REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0101010101</td>
<td>Tuner, VHF (A1000A, SM-D-416341)</td>
<td>Test</td>
<td>0.5</td>
<td>7,10,21</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td>28,33,35,</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>43,44,45,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>128,129,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>132,203,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>010102</td>
<td>Oscillator Assy, RF (A2000A, SM-D-921126)</td>
<td>Test</td>
<td>0.3</td>
<td>7,10,21</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td>0.3</td>
<td>8,9</td>
<td>X</td>
</tr>
<tr>
<td>010103</td>
<td>Oscillator–Buffer (A6000A, SM-D-416342)</td>
<td>Test</td>
<td>0.3</td>
<td>7,10,21</td>
<td>E,AE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.3</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td>01010301</td>
<td>Oscillator–Buffer (Osc–Buff and Parent Board) (SM-D-188989)</td>
<td>Test</td>
<td>0.3</td>
<td>8,9,11,13</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td>0.3</td>
<td>8,9</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td>0101030101</td>
<td>Circuit Card Assy (Parent Board) (TB06001, SM-D-416335)</td>
<td>Test</td>
<td>0.3</td>
<td>8,9,11,13</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td>0.2</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td>0101030102</td>
<td>Oscillator–Buffer (Case and Tuner) (SM-D-416343)</td>
<td>Test</td>
<td>0.4</td>
<td>7,10,21</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td>0.2</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>(2) COMPONENT/ASSEMBLY</td>
<td>(3) MAINTENANCE FUNCTION</td>
<td>(4) MAINTENANCE CATEGORY</td>
<td>(5) TOOLS AND EQPT</td>
<td>(6) REMARKS</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>010104</td>
<td>Null Switch Assy (A7000, SM–C–414770)</td>
<td>Replace</td>
<td>0.2</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td>010105</td>
<td>Selector Control Assy (A7100, SM–C–414649)</td>
<td>Test</td>
<td>0.2</td>
<td>33 thru 218</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td>0.3</td>
<td>8,9</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.3</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>1.0</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>2.0</td>
<td>33,132,218</td>
<td></td>
</tr>
<tr>
<td>010106</td>
<td>Amplifier, Synchro (A7200, SM–D–414741) (A7200A, SM–D–921412)</td>
<td>Replace</td>
<td>0.3</td>
<td>8,9</td>
<td>X</td>
</tr>
<tr>
<td>010107</td>
<td>Control Wiring Assy SM–E–414411</td>
<td></td>
<td></td>
<td></td>
<td>E</td>
</tr>
<tr>
<td>01010701</td>
<td>Wiring Harness Assy SM–E–414413</td>
<td>Test</td>
<td>0.3</td>
<td>13</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test</td>
<td>0.2</td>
<td>47</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td>8,9,21</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>1.0</td>
<td>8,9,21</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td></td>
<td>126,130,132</td>
<td></td>
</tr>
<tr>
<td>010108</td>
<td>Switch Assy SM–D–414632</td>
<td>Test</td>
<td>0.2</td>
<td>21</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td>0.7</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td>010109</td>
<td>Panel and Housing Assy SM–D–414496</td>
<td>Repair</td>
<td>0.5</td>
<td>8,9</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.8</td>
<td>8,9</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>1.5</td>
<td>132,219</td>
<td></td>
</tr>
</tbody>
</table>

Change 3 B-15
MAINTENANCE ALLOCATION CHART

FOR
RECEIVER–TRANSMITTER, RADIO
RT–246A/VRC (CONT)

<table>
<thead>
<tr>
<th>(1) GROUP NUMBER</th>
<th>(2) COMPONENT/ASSEMBLY</th>
<th>(3) MAINTENANCE FUNCTION</th>
<th>(4) MAINTENANCE CATEGORY</th>
<th>(5) TOOLS AND EQPT</th>
<th>(6) REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>01010901</td>
<td>Panel Assy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SM–D–414500</td>
<td>Repair</td>
<td>0.3</td>
<td>8,9</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td>8,9</td>
<td>G, I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.6</td>
<td>132,219</td>
<td></td>
</tr>
<tr>
<td>01010902</td>
<td>Gear Set Assy</td>
<td>Replace</td>
<td>0.8</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SM–D–414525</td>
<td>Repair</td>
<td>0.8</td>
<td>130,131, 132,219</td>
<td></td>
</tr>
<tr>
<td>0102</td>
<td>Crystal Reference</td>
<td>Test</td>
<td>0.3</td>
<td>7,10,21</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>System Assy</td>
<td>Test</td>
<td>0.5</td>
<td>28,33,35, 43,45,204</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(A3000A, SM–D–413519)</td>
<td>Repair</td>
<td>0.3</td>
<td>8,9</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.8</td>
<td>28,35,43, 45,132,204</td>
<td>AE</td>
</tr>
<tr>
<td>010201</td>
<td>Chassis Assy, Electrical</td>
<td>Test</td>
<td>0.3</td>
<td>13</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>(A1, SM–D–413528)</td>
<td>Test</td>
<td>0.5</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td>0.5</td>
<td>8,9</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.7</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>0103</td>
<td>Amplifier Assy, IF</td>
<td>Test</td>
<td>0.3</td>
<td>7,10,21</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>(A4000A, SM–C–413717)</td>
<td>Test</td>
<td>0.3</td>
<td>28,35,37, 44,46,205</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Align</td>
<td>0.4</td>
<td>7,10,21</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.3</td>
<td>8,9</td>
<td>K, AE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28,35,37, 44,46,132,205</td>
<td></td>
</tr>
<tr>
<td>010301</td>
<td>Chassis Assy, Electrical</td>
<td>Test</td>
<td>0.2</td>
<td>13</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>(A1, SM–D–413802)</td>
<td>Test</td>
<td>0.2</td>
<td>13,21</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td>0.5</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td>8,9</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>132</td>
<td></td>
</tr>
</tbody>
</table>

B-16 Change 3
MAINTENANCE ALLOCATION CHART

FOR
RECEIVER–TRANSMITTER, RADIO
RT–246A/VRC (CONT)

<table>
<thead>
<tr>
<th>GROUP NUMBER</th>
<th>COMPONENT/ASSEMBLY</th>
<th>MAINTENANCE FUNCTION</th>
<th>(4) MAINTENANCE CATEGORY</th>
<th>TOOLS AND EQPT</th>
<th>(6) REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0104</td>
<td>Amplifier Assy, IF (Audio and Squelch Amplifier) (A5000A, SM–D–413820)</td>
<td>Test</td>
<td>7,10,21</td>
<td>28,32,36, 37,45,206</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test</td>
<td>0.3</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Align</td>
<td>7,10,21</td>
<td>8,9</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td>8,9</td>
<td>8,9</td>
<td>K,Z</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>28,32,36, 37,45,132,</td>
<td>206</td>
<td></td>
</tr>
<tr>
<td>010401</td>
<td>Chassis Assy, Electrical (A1, SM–D–413879)</td>
<td>Test</td>
<td>13</td>
<td>8,9</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td>8,9</td>
<td>8,9</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>8,9</td>
<td>8,9</td>
<td>M</td>
</tr>
<tr>
<td>0105</td>
<td>Transmitter Speech Amplifier and Modulator Assy, (A8000A, SM–C–414170)</td>
<td>Test</td>
<td>7,10,21</td>
<td>27,20,28, 35,36,37, 208</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Align</td>
<td>7,10,21</td>
<td>8,9</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test</td>
<td>0.3</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>26,27,28, 32,35,37,</td>
<td>132,208</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>8,9</td>
<td>8,9</td>
<td>K,AE</td>
</tr>
<tr>
<td>010501</td>
<td>Chassis Assy, Electrical (A1, SM–C–414276)</td>
<td>Test</td>
<td>13</td>
<td>27,20,28, 35,36,37, 208</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td>8,9</td>
<td>8,9</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>8,9</td>
<td>8,9</td>
<td>M</td>
</tr>
</tbody>
</table>

Change 3 B-17
<table>
<thead>
<tr>
<th>GROUP NUMBER</th>
<th>COMPONENT/ASSEMBLY</th>
<th>MAINTENANCE FUNCTION</th>
<th>C</th>
<th>O</th>
<th>F</th>
<th>H</th>
<th>D</th>
<th>TOOLS AND EQPT</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0106</td>
<td>Power Supply Assy (A9000A, SM-D-921504)</td>
<td>Test</td>
<td>0.3</td>
<td>13</td>
<td>24,29,33,37,217</td>
<td>8,9</td>
<td>24,29,33,37,132,217</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>010601</td>
<td>Power Supply, Electrical (Circuit Board Assy) (A9000A-2, SM-D-921544)</td>
<td>Test</td>
<td>0.3</td>
<td>24,29,33,37,217</td>
<td>8,9</td>
<td>24,29,33,37,132,217</td>
<td>AB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>010602</td>
<td>Circuit Card Assy (Cover Assy) (A9000A-1, SM-D-921507)</td>
<td>Replace</td>
<td>0.5</td>
<td>24,29,33,37,132,217</td>
<td>8,9</td>
<td>24,29,33,37,132,217</td>
<td>AB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>010603</td>
<td>Chassis Assembly (A9000A, SM-D-921514)</td>
<td>Repair</td>
<td>0.5</td>
<td>132</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AB</td>
</tr>
<tr>
<td>010604</td>
<td>Resistor Assembly (A9000A, SM-D-921525)</td>
<td>Test</td>
<td>0.3</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td>0.5</td>
<td>8,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td>8,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>010605</td>
<td>Power Supply Panel Assy (A9000A, SM-B-921523)</td>
<td>Repair</td>
<td>0.4</td>
<td>132</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MAINTENANCE ALLOCATION CHART

FOR
RECEIVER–TRANSMITTER, RADIO
RT–246A/VRC (CONT)

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4) MAINTENANCE CATEGORY</th>
<th>(5) TOOLS AND EQPT</th>
<th>(6) REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>COMPONENT/ ASSEMBLY</td>
<td>MAINTENANCE FUNCTION</td>
<td>C</td>
<td>O</td>
<td>F</td>
</tr>
<tr>
<td>0107</td>
<td>Semiconductor Device Ass'y (A9000B, SM–D–921530)</td>
<td>Test</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0108</td>
<td>Power Amplifier Ass'y (A6200, SM–D–439956)</td>
<td>Test</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010801</td>
<td>RF Amplifier Ass'y (Final Amplifier) (A6201, SM–D–413994)</td>
<td>Repair</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010802</td>
<td>Gear Set (MP6201, SM–D–413982)</td>
<td>Replace</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010803</td>
<td>Wiring Ass'y SM–E–413971</td>
<td>Test</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01080301</td>
<td>Wiring Harness Ass'y SM–E–413975</td>
<td>Test</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010804</td>
<td>Tank Circuit Ass'y (Z6201, SM–D–413999)</td>
<td>Test</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010805</td>
<td>Amplifier Subassembly (Driver) (A6100, SM–D–414045)</td>
<td>Test</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Align</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Change 3 B-19
MAINTENANCE ALLOCATION CHART

FOR RECIIVER-TRANSMITTER, RADIO RT-246A/VRC (CONT)

<table>
<thead>
<tr>
<th>GROUP NUMBER</th>
<th>COMPONENT/ASSEMBLY</th>
<th>MAINTENANCE FUNCTION</th>
<th>(4) MAINTENANCE CATEGORY</th>
<th>(5) TOOLS AND EQPT</th>
<th>(6) REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0109</td>
<td>Voltage Regulator Assy (Voltage Regulator and Housing) (A400, SM–D–414112)</td>
<td>Test</td>
<td>0.5</td>
<td>0.8</td>
<td>7,13,21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test</td>
<td></td>
<td>47</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.8</td>
<td>1.5</td>
<td>8,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td></td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td></td>
<td>126, 132</td>
<td></td>
</tr>
<tr>
<td>010901</td>
<td>Chassis Assy, Electrical (A1, SM–C–414149)</td>
<td>Test</td>
<td>0.3</td>
<td>0.5</td>
<td>7,13,21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td></td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td></td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td>010902</td>
<td>Wiring Assy, Voltage Reg (Chassis Wiring Assy) SM–E–414135</td>
<td>Test</td>
<td>0.8</td>
<td>0.8</td>
<td>7,13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test</td>
<td></td>
<td>47</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td></td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td></td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>01090201</td>
<td>Wiring Harness Assy SM–E–414137</td>
<td>Test</td>
<td>0.5</td>
<td>0.5</td>
<td>8,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td></td>
<td>47</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td></td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>010903</td>
<td>Housing Assy SM–D–414163</td>
<td>Replace</td>
<td>0.5</td>
<td>1.0</td>
<td>8,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>0110</td>
<td>Gear Set Assy (Intermediate Gear Train) (A6, SM–D–413892)</td>
<td>Test</td>
<td>0.1</td>
<td>0.3</td>
<td>8,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td></td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td></td>
<td>201</td>
<td></td>
</tr>
<tr>
<td>0111</td>
<td>Cover Assy (Bottom) SM–D–414288</td>
<td>Replace</td>
<td>0.1</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td></td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td></td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td>0112</td>
<td>Cover Assy (Top) SM–D–414297</td>
<td>Replace</td>
<td>0.1</td>
<td>0.5</td>
<td>8,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td></td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td>0113</td>
<td>Handle and Guard Assy (Right) (14850, A1–9882D)</td>
<td>Replace</td>
<td>0.1</td>
<td>0.5</td>
<td>8,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Install</td>
<td></td>
<td>8,9</td>
<td>W</td>
</tr>
<tr>
<td>0114</td>
<td>Handle and Guard Assy (Left) (14850, A1–8883D)</td>
<td>Replace</td>
<td>0.1</td>
<td>0.5</td>
<td>8,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Install</td>
<td></td>
<td>8,9</td>
<td>W</td>
</tr>
</tbody>
</table>

B-20 Change 3
Section XII MAINTENANCE ALLOCATION CHART
FOR
RECEIVER–TRANSMITTER, RADIO
RT–524A/VRC

<table>
<thead>
<tr>
<th>(1) GROUP NUMBER</th>
<th>(2) COMPONENT/ASSEMBLY</th>
<th>(3) MAINTENANCE FUNCTION</th>
<th>(4) MAINTENANCE CATEGORY</th>
<th>(5) TOOLS AND EQPT</th>
<th>(6) REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>RECEIVER–TRANS–MITTER, RADIO RT–524A/VRC SM–D–414826 DL–SM–B–414825 DL–SM–B–414827</td>
<td>Inspect</td>
<td>0.5</td>
<td>0.5</td>
<td>1 thru 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test</td>
<td>0.5</td>
<td>1.0</td>
<td>7 thru 23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test</td>
<td>1.5</td>
<td>1.0</td>
<td>7 thru 23</td>
</tr>
<tr>
<td></td>
<td>Service</td>
<td>0.5</td>
<td>1.5</td>
<td>7 thru 23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Align</td>
<td>2.5</td>
<td>1.0</td>
<td>1,8,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Install</td>
<td>0.4</td>
<td>0.5</td>
<td>1</td>
<td>AF</td>
</tr>
<tr>
<td></td>
<td>Repair</td>
<td>0.3</td>
<td>1.0</td>
<td>7 thru 23</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Replace</td>
<td>0.3</td>
<td>1.0</td>
<td>7 thru 23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Repair</td>
<td>3.0</td>
<td>3.5</td>
<td>7 thru 23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Repair</td>
<td>3.5</td>
<td>50.</td>
<td>24 thru 49, 101 thru 132, 201 thru 223</td>
<td></td>
</tr>
<tr>
<td>0201</td>
<td>Control Assy</td>
<td>Test</td>
<td>0.5</td>
<td>1.0</td>
<td>7 thru 13</td>
</tr>
<tr>
<td></td>
<td>(Front Panel Group)</td>
<td>Repair</td>
<td>0.3</td>
<td>2.0</td>
<td>7,9,13</td>
</tr>
<tr>
<td></td>
<td>(A350)</td>
<td>Repair</td>
<td>0.5</td>
<td>3.0</td>
<td>7,9,13</td>
</tr>
<tr>
<td></td>
<td>SM–D–414380</td>
<td>Repair</td>
<td>2.0</td>
<td>3.0</td>
<td>33,47,130, 131,132, 219</td>
</tr>
<tr>
<td>020101</td>
<td>VHF Tuner Assy</td>
<td>Test</td>
<td>0.2</td>
<td>0.5</td>
<td>7,10,21</td>
</tr>
<tr>
<td></td>
<td>(A1000)</td>
<td>Repair</td>
<td>0.5</td>
<td>0.5</td>
<td>7,10,21</td>
</tr>
<tr>
<td></td>
<td>SM–D–416345</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02010101</td>
<td>Tuner, VHF</td>
<td>Test</td>
<td>0.5</td>
<td>0.5</td>
<td>7,10,21</td>
</tr>
<tr>
<td></td>
<td>(A1000)</td>
<td>Replace</td>
<td>0.5</td>
<td>0.5</td>
<td>8,9</td>
</tr>
<tr>
<td></td>
<td>SM–D–188980</td>
<td>Repair</td>
<td>0.5</td>
<td>0.7</td>
<td>8,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.7</td>
<td>0.7</td>
<td>28,33,35, 43,44,45, 128,129, 132,203, 221</td>
</tr>
</tbody>
</table>

Change 3 B-21
MAINTENANCE ALLOCATION CHART
FOR
RECEIVER–TRANSmitter, RADIO
RT–524A/VRC (CONT)

<table>
<thead>
<tr>
<th>(1) GROUP NUMBER</th>
<th>(2) COMPONENT/ASSEMBLY</th>
<th>(3) MAINTENANCE FUNCTION</th>
<th>(4) MAINTENANCE CATEGORY</th>
<th>(5) TOOLS AND EQPT</th>
<th>(6) REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0201010101</td>
<td>Tuner, VHF (A1000A, SM–D–416341)</td>
<td>Test Repair</td>
<td>0.5 0.5</td>
<td>7,10,21 28,33,35, 43,44,45, 128,132, 203,221</td>
<td>G</td>
</tr>
<tr>
<td>020102</td>
<td>Oscillator Assy, RF (A2000A, SM–D–921126)</td>
<td>Test Replace</td>
<td>0.3 0.3</td>
<td>7,10,21 8,9</td>
<td>X</td>
</tr>
<tr>
<td>020103</td>
<td>Oscillator Buffer (A6000A, SM–D–416342)</td>
<td>Test Repair</td>
<td>0.3 0.3</td>
<td>7,10,21 8,9</td>
<td>E,AE</td>
</tr>
<tr>
<td>02010301</td>
<td>Oscillator–Buffer (Osc–Buf & Parent Bd) SM–D–188989</td>
<td>Test Replace Repair</td>
<td>0.3 0.3 0.5</td>
<td>8,9,11,13 8,9 8,9</td>
<td>B,O</td>
</tr>
<tr>
<td>0201030101</td>
<td>Oscillator–Buffer (Case & Tuner) SM–D–416343</td>
<td>Test Replace Repair</td>
<td>0.4 0.2 0.3</td>
<td>7,10,21 8,9 8,9</td>
<td>B,G</td>
</tr>
<tr>
<td>020104</td>
<td>Control Wiring Assy SM–E–414837</td>
<td></td>
<td></td>
<td></td>
<td>E</td>
</tr>
<tr>
<td>02010401</td>
<td>Wiring Harness Assy SM–E–414839</td>
<td>Test Test Repair Repair Replace</td>
<td>0.3 0.2 1.0 1.0</td>
<td>13 47 8,9,21 8,9,21 126,130, 132</td>
<td>B,O,G</td>
</tr>
<tr>
<td>0201040101</td>
<td>Switch Assy SM–D–414632</td>
<td>Test Replace Repair</td>
<td>0.2 0.7 0.5</td>
<td>21 8,9 8,9</td>
<td>B</td>
</tr>
</tbody>
</table>
MAINTENANCE ALLOCATION CHART

FOR

RECEIVER–TRANSMITTER, RADIO
RT–524A/VRC (CONT)

<table>
<thead>
<tr>
<th>GROUP NUMBER</th>
<th>COMPONENT/ASSEMBLY</th>
<th>MAINTENANCE FUNCTION</th>
<th>(4) MAINTENANCE CATEGORY</th>
<th>(5) TOOLS AND EQPT</th>
<th>(6) REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>O</td>
<td>F</td>
</tr>
<tr>
<td>020105</td>
<td>Panel & Housing Assy</td>
<td>Repair</td>
<td>0.5</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SM–D–414841</td>
<td>Repair</td>
<td>0.8</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Repair</td>
<td>1.5</td>
<td>132,219</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02010501</td>
<td>Panel Assy</td>
<td>Repair</td>
<td>0.3</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SM–D–414843</td>
<td>Repair</td>
<td>0.5</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Repair</td>
<td>0.6</td>
<td>132,219</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02010502</td>
<td>Gear Set Assy</td>
<td>Replace</td>
<td>0.8</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SM–D–414849</td>
<td>Repair</td>
<td>0.8</td>
<td>130,131,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>132,219</td>
<td></td>
</tr>
<tr>
<td>0202</td>
<td>Crystal Reference</td>
<td>Test</td>
<td>0.3</td>
<td>7,10,21</td>
<td></td>
</tr>
<tr>
<td>System Assy</td>
<td>System Assy</td>
<td>Test</td>
<td>0.5</td>
<td>28,33,35,</td>
<td>45</td>
</tr>
<tr>
<td>(A3000A,</td>
<td>System Assy</td>
<td>Repair</td>
<td>0.5</td>
<td>28,35,43,</td>
<td>45,132,</td>
</tr>
<tr>
<td>SM–D–413519)</td>
<td></td>
<td>Repair</td>
<td>0.8</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td>020201</td>
<td>Chassis Assy Electrical,</td>
<td>Test</td>
<td>0.3</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>(A1, SM–D–413528)</td>
<td></td>
<td>Test</td>
<td>0.5</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td>0.5</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td>0203</td>
<td>Amplifier Assy, IF</td>
<td>Test</td>
<td>0.3</td>
<td>7,10,21</td>
<td></td>
</tr>
<tr>
<td>(A4000A,</td>
<td>Amplifier Assy, IF</td>
<td>Test</td>
<td>0.3</td>
<td>28,35,37,</td>
<td>44,46,</td>
</tr>
<tr>
<td>SM–C–413717)</td>
<td></td>
<td>Align</td>
<td>0.4</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.4</td>
<td>7,10,21</td>
<td>8,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td>28,35,37,</td>
<td>44,46,</td>
</tr>
<tr>
<td>020301</td>
<td>Chassis Assy, Electrical (A1, SM–D–413802)</td>
<td>Test</td>
<td>0.2</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test</td>
<td>0.2</td>
<td>13,21</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td>0.5</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td>132</td>
<td></td>
</tr>
</tbody>
</table>

Change 3 B-23
MAINTENANCE ALLOCATION CHART
FOR
RECEIVER–TRANSMITTER, RADIO
RT–524A/VRC (CONT)

<table>
<thead>
<tr>
<th>GROUP NUMBER</th>
<th>COMPONENT/ASSEMBLY</th>
<th>MAINTENANCE FUNCTION</th>
<th>(4) MAINTENANCE CATEGORY</th>
<th>(5) TOOLS AND EQPT</th>
<th>(6) REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0204</td>
<td>Amplifier Assy, IF (Audio & Squelch Amplifier) A5000A SM–D–413820</td>
<td>Test</td>
<td>0.3</td>
<td>7,10,21, 28,32,36, 37,45, 206</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Align</td>
<td>0.2</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td>0.2</td>
<td></td>
<td>K,Z</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td></td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>020401</td>
<td>Chassis Assy, Electrical (A1, SM–D–413879)</td>
<td>Test</td>
<td>0.3</td>
<td>13</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td>0.2</td>
<td>8,9</td>
<td>|</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.3</td>
<td>8,9</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.3</td>
<td>8,9</td>
<td>M</td>
</tr>
<tr>
<td>0205</td>
<td>Transmitter Speech Amp & Modulator Assy (A8000A, SM–C–414170)</td>
<td>Test</td>
<td>0.3</td>
<td>7,10,21, 27,28,32, 35,36,37, 208</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test</td>
<td>0.3</td>
<td>7,10,21, 27,28,32, 35,36,37, 208</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Align</td>
<td>0.5</td>
<td>8,9</td>
<td>K,AE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.3</td>
<td>8,9</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.3</td>
<td>27,28,32, 35,36,37, 208</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td>020501</td>
<td>Chassis Assy, Electrical (A1, SM–C–414276)</td>
<td>Test</td>
<td>0.2</td>
<td>13</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test</td>
<td>0.2</td>
<td>27,28,32, 35,36,37, 208</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td>0.3</td>
<td>8,9</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.3</td>
<td>8,9</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>132,208</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MAINTENANCE ALLOCATION CHART

FOR

RECEIVER–TRANSMITTER, RADIO
RT–524A/VRC (CONT)

<table>
<thead>
<tr>
<th>(1) GROUP NUMBER</th>
<th>(2) COMPONENT/ASSEMBLY</th>
<th>(3) MAINTENANCE FUNCTION</th>
<th>(4) MAINTENANCE CATEGORY</th>
<th>(5) TOOLS AND EQPT</th>
<th>(6) REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0206</td>
<td>Power Supply Assy (A9000A, SM–D–921504)</td>
<td>Test, Replace, Repair</td>
<td>C:0.3, O:0.3, F:0.2, H:1.0, D:</td>
<td>24,29,33, 37,217</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8,9</td>
<td>AA</td>
</tr>
<tr>
<td>020601</td>
<td>Power Supply, Electrical (Circuit Board Assy) A9000A–2, SM–D–921544</td>
<td>Test, Replace, Repair</td>
<td>C:0.3, O:0.5, F:0.8, H:1.0, D:</td>
<td>24,29,33, 37,217</td>
<td>AB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td>020602</td>
<td>Circuit Card Assy (Cover Assy) A90001, SM–D–991507</td>
<td>Replace, Repair</td>
<td>C:0.1, O:0.5, F:0.8, H:1.0, D:</td>
<td>24,29,33, 37,132, 217</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>020603</td>
<td>Chassis Assy (A9000A, SM–D–921514)</td>
<td>Repair</td>
<td>C:0.5, O:0.5, F:0.8, H:1.0, D:</td>
<td>24,29,33, 37,132, 217</td>
<td>AB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>020604</td>
<td>Resistor Assy (A9000A, SM–D–921525)</td>
<td>Test, Replace, Repair</td>
<td>C:0.3, O:0.5, F:0.8, H:1.0, D:</td>
<td>24,29,33, 37,132, 217</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8,9</td>
<td>AB</td>
</tr>
<tr>
<td>020605</td>
<td>Power Supply Panel Assy (A9000A, SM–B–921523)</td>
<td>Repair</td>
<td>C:0.3, O:0.5, F:0.8, H:1.0, D:</td>
<td>24,29,33, 37,132, 217</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0207</td>
<td>Semiconductor Device Assy (A9400B, SM–D–921530)</td>
<td>Test, Replace</td>
<td>C:0.3, O:0.2, F:0.8, H:1.0, D:</td>
<td>24,29,33, 37,132, 217</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8,9</td>
<td>AA</td>
</tr>
</tbody>
</table>

Change 3 B-25
MAINTENANCE ALLOCATION CHART

FOR

RECEIVER–TRANSMITTER, RADIO

RT–524A/VRC (CONT)

<table>
<thead>
<tr>
<th>GROUP NUMBER</th>
<th>COMPONENT/ASSEMBLY</th>
<th>MAINTENANCE FUNCTION</th>
<th>(4) MAINTENANCE CATEGORY</th>
<th>(5) TOOLS AND EQPT</th>
<th>(6) REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0208</td>
<td>Power Amplifier Assy (A6200, SM–D–439956)</td>
<td>Test</td>
<td>0.5</td>
<td>7,10,21</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test</td>
<td>0.8</td>
<td>7,10,21</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Align</td>
<td>0.2</td>
<td>6,9</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td>1.0</td>
<td>8,9</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>1.5</td>
<td>8,9</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>2.0</td>
<td>33,35,38,39,132,202,223</td>
<td></td>
</tr>
<tr>
<td>020801</td>
<td>RF Amplifier Assy (Final Amplifier) (A6201, SM–D–413994)</td>
<td>Repair</td>
<td>0.7</td>
<td>8,9</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>1.0</td>
<td>8,9</td>
<td>G</td>
</tr>
<tr>
<td>020802</td>
<td>Gear Set (MP6201, SM–D–413982)</td>
<td>Replace</td>
<td>0.2</td>
<td>8,9</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.3</td>
<td>8,9</td>
<td>O</td>
</tr>
<tr>
<td>020803</td>
<td>Wiring Assy, SM–E–413971</td>
<td>Test</td>
<td>0.2</td>
<td>13</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td>8,9</td>
<td>O</td>
</tr>
<tr>
<td>02080301</td>
<td>Wiring Harness Assy SM–D–413975</td>
<td>Test</td>
<td>0.2</td>
<td>13</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td>8,9</td>
<td>O</td>
</tr>
<tr>
<td>020804</td>
<td>Tank Circuit Assy (Z6201, SM–D–413999)</td>
<td>Test</td>
<td>0.3</td>
<td>202</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td>8,9</td>
<td>O</td>
</tr>
<tr>
<td>020805</td>
<td>Amplifier Subassembly (Driver) (A6100, SM–D–414045)</td>
<td>Test</td>
<td>0.3</td>
<td>202</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Align</td>
<td>0.3</td>
<td>7,10,21</td>
<td>Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td>0.5</td>
<td>8,9</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td>8,9</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td>8,9</td>
<td>O</td>
</tr>
</tbody>
</table>

B-26 Change 3
MAINTENANCE ALLOCATION CHART
FOR
RECEIVER-TRANSMITTER, RADIO
RT-524A/VRC (CONT)

<table>
<thead>
<tr>
<th>(1) GROUP NUMBER</th>
<th>(2) COMPONENT/ASSEMBLY</th>
<th>(3) MAINTENANCE FUNCTION</th>
<th>(4) MAINTENANCE CATEGORY</th>
<th>(5) TOOLS AND EQPT</th>
<th>(6) REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>02080501</td>
<td>Tuner, Radiofrequency (Driver Tuning Assy) (A6102, SM–D–414048)</td>
<td>Test Replace Repair Repair</td>
<td>C 0.2 O 8.9 F 33,35,38, 39,132, D 202,223</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>02080502</td>
<td>Driver Ampl Assy (A6101, SM–D–414063)</td>
<td>Test Replace Repair Repair</td>
<td>C 0.5 O 8.9 F 33,35,38, 39,132, D 202</td>
<td>B 7,10,21</td>
<td></td>
</tr>
<tr>
<td>0209</td>
<td>Voltage Regulator Assy (Voltage Regulator & Hosing) (A400, SM–D–414112)</td>
<td>Test Replace Repair Repair</td>
<td>C 0.8 O 8.9 F 8,9 D 132</td>
<td>B 7,13,21</td>
<td></td>
</tr>
<tr>
<td>020901</td>
<td>Chassis Assy, Elec (A1, SM–C–414149)</td>
<td>Test Repair Repair Repair</td>
<td>C 0.5 O 8.9 F 8,9 D 132</td>
<td>B 7,13,21</td>
<td></td>
</tr>
<tr>
<td>020902</td>
<td>Wiring Assy, Voltage Reg (Chassis Wiring Assy) SM–E–414135</td>
<td>Test Replace Repair Replacement</td>
<td>C 0.8 O 8.9 F 8,9 D 132</td>
<td>B 7,13,21</td>
<td></td>
</tr>
<tr>
<td>02090201</td>
<td>Wiring Harness Assy SM–E–414137</td>
<td>Test Replace</td>
<td>C 0.8 O 8.9 F 8,9 D 132</td>
<td>B 7,13,21</td>
<td></td>
</tr>
<tr>
<td>020903</td>
<td>Housing Assy SM–D–414163</td>
<td>Test Replace</td>
<td>C 0.8 O 8.9 F 8,9 D 132</td>
<td>B 7,13,21</td>
<td></td>
</tr>
<tr>
<td>0210</td>
<td>Gear Set Assy (Intermediate Gear Train) (A6, SM–D–413892)</td>
<td>Test Replace Repair Repair</td>
<td>C 0.8 O 8.9 F 8,9 D 132</td>
<td>B 7,13,21</td>
<td></td>
</tr>
</tbody>
</table>

Change 3 B-27
<table>
<thead>
<tr>
<th>GROUP NUMBER</th>
<th>COMPONENT/ASSEMBLY</th>
<th>MAINTENANCE FUNCTION</th>
<th>(4) MAINTENANCE CATEGORY</th>
<th>TOOLS AND EQPT</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0211</td>
<td>Cover Assy (Bottom)SM-D-318065 (SM-D-414288)</td>
<td>Replace Repair</td>
<td>C 0.1 O 0.3 F 1 H 8,9 D</td>
<td></td>
<td>AD</td>
</tr>
<tr>
<td>0212</td>
<td>Cover Assy (Top)SM-D-414297</td>
<td>Replace Repair</td>
<td>C 0.1 O 0.3 F 1 H 8,9 D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0213</td>
<td>Handle & Guard Assy (Right) (14850) A1-8882D</td>
<td>Replace Install Repair</td>
<td>C 0.1 O 0.5 F 8,9 H 8,9 D</td>
<td></td>
<td>AG W</td>
</tr>
<tr>
<td>0214</td>
<td>Handle & Guard Assy (Left) (14850) A1-8883D</td>
<td>Replace Install Repair</td>
<td>C 0.1 O 0.5 F 8,9 H 8,9 D</td>
<td></td>
<td>AG W</td>
</tr>
</tbody>
</table>
Section XIII MAINTENANCE ALLOCATION CHART

FOR

RECEIVER, RADIO

R–442A/VRC

<table>
<thead>
<tr>
<th>(1) GROUP NUMBER</th>
<th>(2) COMPONENT/ASSEMBLY</th>
<th>(3) MAINTENANCE FUNCTION</th>
<th>(4) MAINTENANCE CATEGORY</th>
<th>(5) TOOLS AND EQPT</th>
<th>(6) REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>RECEIVER, RADIO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R–442A/VRC</td>
<td>Inspect</td>
<td>0.5</td>
<td>1 thru 6</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>SM–D–414901</td>
<td>Test</td>
<td>0.5</td>
<td>7 thru 23</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>DL–SM–B–414900</td>
<td>Test</td>
<td>1.0</td>
<td>7 thru 23</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>Service</td>
<td></td>
<td>0.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Align</td>
<td></td>
<td>2.5</td>
<td>7 thru 23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Install</td>
<td></td>
<td>0.4</td>
<td>1.8,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Repair</td>
<td></td>
<td>0.3</td>
<td>1</td>
<td>AF</td>
</tr>
<tr>
<td></td>
<td>Replace</td>
<td></td>
<td>0.3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Repair</td>
<td></td>
<td>3.0</td>
<td>7 thru 23</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Repair</td>
<td></td>
<td>3.5</td>
<td>7 thru 23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overhaul</td>
<td></td>
<td>40.</td>
<td>24 thru 49,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>101 thru 132,201</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>thru 223</td>
<td></td>
</tr>
<tr>
<td>0301</td>
<td>Control Assy</td>
<td>Test</td>
<td>0.5</td>
<td>7 thru 13</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>(Front Panel Group)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(A100)</td>
<td>Repair</td>
<td>0.3</td>
<td>7,9,13</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>SM–D–414915</td>
<td>Repair</td>
<td>0.5</td>
<td>7,9,13</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
<td>33,47,130,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>131,132,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>030101</td>
<td>VHF Tuner Assy</td>
<td>Test</td>
<td>0.2</td>
<td>7,10,21</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>(A1000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SM–D–416345</td>
<td>Repair</td>
<td>0.5</td>
<td>7,10,21</td>
<td>E,AE</td>
</tr>
<tr>
<td>03010101</td>
<td>Tuner, VHF</td>
<td>Test</td>
<td>0.5</td>
<td>7 thru 13</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>(A1000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SM–D–188980</td>
<td>Replace</td>
<td>0.5</td>
<td>7 thru 13</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.7</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28,33,35,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>43,44,45,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>128,129,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>132,203,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>221</td>
<td></td>
</tr>
</tbody>
</table>
MAINTENANCE ALLOCATION CHART
FOR
RECEIVER, RADIO
R–442A/VRC (CONT)

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2) COMPONENT/ASSEMBLY</th>
<th>(3) MAINTENANCE FUNCTION</th>
<th>(4) MAINTENANCE CATEGORY</th>
<th>(5) TOOLS AND EQPT</th>
<th>(6) REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0301010101</td>
<td>Tuner, VHF (A1000A, SM–D–416341)</td>
<td>Test Repair</td>
<td>0.5 0.5</td>
<td>7,10,21 28,33,35, 43,44,45, 128,129, 132,203, 221</td>
<td>G</td>
</tr>
<tr>
<td>030102</td>
<td>Oscillator Assy, RF (A2000A, SM–D–921126)</td>
<td>Test Replace</td>
<td>0.3 0.3</td>
<td>7,10,21 8,9</td>
<td>B</td>
</tr>
<tr>
<td>030103</td>
<td>Control Wiring Assy SM–E–414918</td>
<td>Test</td>
<td>0.3</td>
<td>13</td>
<td>B</td>
</tr>
<tr>
<td>03010301</td>
<td>Wiring Harness Assy SM–E–414922</td>
<td>Test Repair Repair Replace</td>
<td>0.3 0.2 0.1 1.0</td>
<td>13 47 8,9,21 8,9,21 126,130, 132</td>
<td>B</td>
</tr>
<tr>
<td>030104</td>
<td>Panel & Housing Assy SM–D–414936</td>
<td>Repair Repair Repair</td>
<td>0.5 0.8 1.5</td>
<td>8,9 8,9 132,220</td>
<td>T C</td>
</tr>
<tr>
<td>03010401</td>
<td>Panel Assy SM–D–414932</td>
<td>Repair Repair</td>
<td>0.3 0.5 0.6</td>
<td>8,9 8,9 132,220</td>
<td>O G</td>
</tr>
<tr>
<td>03010402</td>
<td>Gear Set Assy SM–D–414938</td>
<td>Replace Repair</td>
<td>0.8 0.8</td>
<td>8,9 130,131, 132,220</td>
<td>O</td>
</tr>
</tbody>
</table>
MAINTENANCE ALLOCATION CHART

FOR

RECEIVER, RADIO

R-442A/VRC (CONT)

<table>
<thead>
<tr>
<th>(1) GROUP NUMBER</th>
<th>(2) COMPONENT/ASSEMBLY</th>
<th>(3) MAINTENANCE FUNCTION</th>
<th>(4) MAINTENANCE CATEGORY</th>
<th>(5) TOOLS AND EQPT</th>
<th>(6) REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0302</td>
<td>Crystal Reference System Assy</td>
<td>Test</td>
<td>0.3</td>
<td>7,10,21</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>(A3000A, SM-D-413519)</td>
<td>Test</td>
<td>0.5</td>
<td>28,33,35,</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td>43,45,204</td>
<td>AE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.8</td>
<td>28,33,35,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>43,45,132,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>204</td>
<td></td>
</tr>
<tr>
<td>030201</td>
<td>Chassis Assy Electrical, (A1, SM-D-413528)</td>
<td>Test</td>
<td>0.3</td>
<td>13</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test</td>
<td>0.3</td>
<td>204</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td>0.5</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>0303</td>
<td>Amplifier Assy, IF (A4000A, SM-C-413717)</td>
<td>Test</td>
<td>0.3</td>
<td>7,10,21</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test</td>
<td>0.3</td>
<td>28,35,37,</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Align</td>
<td>0.4</td>
<td>44,46,205</td>
<td>K, AE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.3</td>
<td>7,10,21</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28,35,37,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44,46,132,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>030301</td>
<td>Chassis Assy, Electrical (A1, SM-D-413802)</td>
<td>Test</td>
<td>0.2</td>
<td>13</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test</td>
<td>0.2</td>
<td>13,21</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td>0.5</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>(1) GROUP NUMBER</td>
<td>(2) COMPONENT/ASSEMBLY</td>
<td>(3) MAINTENANCE FUNCTION</td>
<td>(4) MAINTENANCE CATEGORY</td>
<td>(5) TOOLS AND EQPT</td>
<td>(6) REMARKS</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>------------</td>
</tr>
<tr>
<td>0304</td>
<td>Amplifier Assy, IF (Audio & Squelch Amplifier (A5000A, SM-D-413820))</td>
<td>Test</td>
<td>0.3</td>
<td>7,10,21</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test</td>
<td>0.3</td>
<td>28,32,36,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Align</td>
<td>0.2</td>
<td>37,45,</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td>0.2</td>
<td>206</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td>7,10,21</td>
<td>K,Z</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td>8,9</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td>030401</td>
<td>Chassis Assy, Electrical (A1, SM-D-413879)</td>
<td>Test</td>
<td>0.3</td>
<td>13</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td>0.2</td>
<td>8,9</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.3</td>
<td>8,9</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td>0305</td>
<td>Voltage Regulator Assy (Voltage Regulator & Housing) (A200, SM-D-414906)</td>
<td>Test</td>
<td>0.5</td>
<td>7,13,21</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test</td>
<td>0.8</td>
<td>47</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>1.5</td>
<td>8,9</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>1.5</td>
<td>126,132</td>
<td></td>
</tr>
<tr>
<td>030501</td>
<td>Voltage Regulator Wiring Assy (Chassis Wiring Assy) SM-D-414908</td>
<td>Test</td>
<td>0.8</td>
<td>7,13,21</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test</td>
<td>0.3</td>
<td>47</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.8</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>030502</td>
<td>Housing Assy SM-D-414912</td>
<td>Repair</td>
<td>0.4</td>
<td>8,9</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td>0.5</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td>1.0</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>0306</td>
<td>Cover Assy (Top) SM-D-414957</td>
<td>Replace</td>
<td>0.1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.3</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td>0307</td>
<td>Cover Assy(Bottom) SM-D-414960</td>
<td>Replace</td>
<td>0.1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.3</td>
<td>8,9</td>
<td></td>
</tr>
</tbody>
</table>

B-32 Change 3
Section XIV TOOL AND TEST EQUIPMENT REQUIREMENTS
FOR
RADIO-TRANSMITTERS RT–246A/VRC, RT–524A/VRC
AND RADIO-RECEIVER R–442A/VRC

<table>
<thead>
<tr>
<th>TOOL/TEST EQUIPMENT REF CODE</th>
<th>MAINT CATEGORY</th>
<th>NOMENCLATURE</th>
<th>NATIONAL STOCK NUMBER</th>
<th>TOOL NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O</td>
<td>Tool Kit, Electronic Equipment TK–101/G</td>
<td>5180–00–064–5178</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>Digital Multimeter AN/PSM–45A or Multimeter AN/URM–105 (6625–00–581–2036) or AN/USM–223 (6625–00–999–7465)</td>
<td>6625–01–265–6000</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>Power Supply PP–2953</td>
<td>6130–00–985–7899</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>O</td>
<td>Dummy Load DA–553/U (Dummy Load, DA–437/U (5985–00–089–8990) may be used)</td>
<td>6625–01–094–5646</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>O</td>
<td>Meter, RF Power AN/URM–182 or AN/URM–182A</td>
<td>6625–00–148–9371</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>O</td>
<td>Test Set, Radio AN/PRM–34</td>
<td>6625–01–094–5646</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>F,H,D</td>
<td>Power Supply PP–4763A/GRC (Power Supply PP–1104/G (6130–00–635–4900) or equal may be used)</td>
<td>6130–00–113–9768</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>F,H,D</td>
<td>Tool Kit, Electronic Equipment TK–100/G (Tool Kit, Electronic Repairman (5180–00–532–9112) may be used)</td>
<td>5180–00–605–0079</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>F,H,D</td>
<td>Test Set Communications, Portable AN/GRM–114A (When provided will replace Items 11 thru 20)</td>
<td>6625–01–114–4481</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>F,H</td>
<td>Multimeter ME–26B/U (Multimeter ME–303/U (6625–00–969–4105) may be used)</td>
<td>6625–00–646–9408</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>F,H</td>
<td>Generator, Signal SG–1171 /U</td>
<td>6625–01–133–6160</td>
<td></td>
</tr>
</tbody>
</table>
TOOL AND TEST EQUIPMENT REQUIREMENTS
FOR
RADIO–TRANSMITTERS RT–246A/VRC, RT–524A/VRC
AND RADIO–RECEIVER R–442A/VRC (Cont)

<table>
<thead>
<tr>
<th>TOOL/EQUIPMENT REF CODE</th>
<th>MAINT CATEGORY</th>
<th>NOMENCLATURE</th>
<th>NATIONAL STOCK NUMBER</th>
<th>TOOL NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>F,H</td>
<td>Multimeter AN/USM–486 or (Multimeter AN/USM–223 (6625–00–999–7465) may be used for all purposes except Test of Semiconductor Devices by Measurement of Forward and Reverse Junction Resistance</td>
<td>6625–01–145–2430</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>F,H</td>
<td>Electronic Counter, Digital Readout AN/USM–459, (H–P 5328A) (Electronic Counter AN/USM–207A (6625–00–044–3228) or Frequency Counter H–P MDL 5245L (6625–00–973–4837) may be used)</td>
<td>6625–01–061–8928</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>F,H</td>
<td>Generator, Signal SG–1170/U (Generator, Signal AN/URM–103 (6625–00–868–8352), Generator, Signal SG–1144 (6625–01–075–8478), Generator, Signal AN/URM–48 (6625–00–553–1178), may be used. Frequency accuracy considerations will require use of an external frequency counter)</td>
<td>6625–01–120–3501</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>F,H</td>
<td>Oscilloscope AN/USM–488, (Oscilloscope AN/USM–281C (6625–00–106–9622) may be used)</td>
<td>6625–01–187–7847</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>F,H</td>
<td>Meter, Radio Frequency Power AN/URM–120</td>
<td>6625–00–813–8430</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>F,H</td>
<td>Dummy Load, Electrical DA–75/U (Dummy Load, DA–553 may be used)</td>
<td>6625–00–177–1639</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>F,H</td>
<td>Meter, Modulation ME–57 (80058)</td>
<td>6625–00–432–7312</td>
<td></td>
</tr>
</tbody>
</table>
TOOL AND TEST EQUIPMENT REQUIREMENTS FOR
RADIO-TRANSMITTERS RT-246A/VRC, RT-524A/VRC AND RADIO-RECEIVER R-442A/VRC (Cont)

<table>
<thead>
<tr>
<th>TOOL/TEST EQUIPMENT REF CODE</th>
<th>MAINT CATEGORY</th>
<th>NOMENCLATURE</th>
<th>NATIONAL STOCK NUMBER</th>
<th>TOOL NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>F,H,D</td>
<td>Maintenance Kit Electronic MK-1978/VRC (When Maintenance Kit MK-1978/VRC is not provided, the following minimum fixtures and accessories are required) Test Cable No. 1 (6625-00-880-6149) Test Cable No. 2 (6625-00-880-5209) Test Cable No. 3 (6625-00-880-5215) Test Cable No. 4 (6625-00-880-5216) Test Cable No. 5 (6625-00-880-6079) Test Cable No. 6 (6625-00-880-6081) Test Cable No. 7 (6625-00-880-6095) Test Cable No. 8 (6625-00-880-6097) Test Cable No. 9 (6625-00-880-6152) Test Cable No. 12,20 DB Pad, DA-397, or Equal (6625-00-738-5991) (Substitutes may be fabricated) A1000A Alignment Cover, (Fabricate per TM 11-5820-401-34-2) A6000A Alignment Cover, (Fabricate per TM 11-5820-401-34-2) A8100 Alignment Cover, (Fabricate per TM 11-5820-401-34-2) Alignment Tool JFD (73899) P/N 5284, (Preferred) or Alignment Tool Jonard 3767 (5120-00-724-3767) Post Extraction Tool, Viking Ind. (53156) 098-03004)001 (Preferred) Pin Extraction Tool, Viking Ind. (53156) 115-0040-000 (Preferred) or Installation and Removal Tool (96906) (5120-00-230-3770) MS18278-1 Extender Cable, A-5000A Assy (Test Cable No. 12, Fabricate per TM 11-5820-401-34-2) Extender Cable, A6200 Assy (Fabricate per TM 11-5820401-34-2) Cable, RF CG-409/U Antenna AS-1 729/VRC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE

Equivalent commercial equipment not otherwise specified may be used by maintenance activities when such equipment is provided. This does not constitute authority to deviate from the provisions of AR 750-43.
TOOL AND TEST EQUIPMENT REQUIREMENTS
FOR
RADIO-TRANSMITTERS RT-246A/VRC, RT-524A/VRC
AND RADIO-RECEIVER R-442A/VRC (Cont)

<table>
<thead>
<tr>
<th>TOOL/TEST EQUIPMENT FIEF CODE</th>
<th>MAINT CATEGORY</th>
<th>NOMENCLATURE</th>
<th>NATIONAL STOCK NUMBER</th>
<th>TOOL NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>O.F.H</td>
<td>Hand Set H-250/G (Or Equal)</td>
<td>5965-01-2474723</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>F.H.D</td>
<td>Attenuator, Variable CN–796/U</td>
<td>5985-00-831-5991</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>D</td>
<td>A9000A Test Panel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>D</td>
<td>Analyzer ZM-3</td>
<td>6625-00-229-1060</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>D</td>
<td>Audio Oscillator H–P 200AB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>D</td>
<td>Deviation Meter, Marconi 2300A</td>
<td>6625-00-480-8706</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>D</td>
<td>Digital Readout, Electronic Counter ANA/USM-459</td>
<td>6625-01-061-8928</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>D</td>
<td>Electronic Multimeter Fluke 8000A</td>
<td>6625-01-322-8175</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>D</td>
<td>Control, Frequency Selector C-2742/VRC</td>
<td>5820-00-892-3343</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>D</td>
<td>Multimeter, Simpson MDL260</td>
<td>6625-00-985-3951</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>D</td>
<td>Oscilloscope Tevtronix MDL 7704A</td>
<td>6625-00-115-2402</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>D</td>
<td>Power Supply PP-1 104/G</td>
<td>6130-00-635-4900</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>D</td>
<td>Signal Generator AN/GRM-50 (H-P606A)</td>
<td>6625-00-003-3238</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>D</td>
<td>Signal Generator H-P 8660B</td>
<td>6625-01-011–2491</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>D</td>
<td>Signal Generator AN/URM-1 27</td>
<td>6625-00-783-5965</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>D</td>
<td>Spectrum Analyzer H-P-4333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>D</td>
<td>Waftmeter, Thru-Line Bird MDL 43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>D</td>
<td>Dummy Load Bird MDL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>D</td>
<td>Waftmeter, Bird MDL 61 (2 l/2–20W)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>D</td>
<td>Voltmeter ME–30C/U</td>
<td>6625-00-669-0742</td>
<td></td>
</tr>
</tbody>
</table>
TOOL AND TEST EQUIPMENT REQUIREMENTS

FOR

RADIO-TRANSMITTERS RT-246A/VRC, RT-524A/VRC

AND RADIO-RECEIVER R-442A/VRC (Cont)

<table>
<thead>
<tr>
<th>TOOL/EQUIPMENT REF CODE</th>
<th>MAINT CATEGORY</th>
<th>NOMENCLATURE</th>
<th>NATIONAL STOCK NUMBER</th>
<th>TOOL NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>D</td>
<td>Voltmeter, Electronic, Boonton 91C (RF Millivoltmeter)</td>
<td>6625-00-973-2294</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>D</td>
<td>Spectrum Analyzer, Consisting of HP 141T Mainframe HP 8552B RF Section HP 8553B IF Section</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>D</td>
<td>RF Millivoltmeter, Boonton 92BD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>D</td>
<td>Digital Voltmeter, Simpson 464</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>D</td>
<td>DC Voltmeter AWUSM-98A</td>
<td>6625-00-753-2115</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>D</td>
<td>AN/GSM-72 Robotester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>D</td>
<td>High Impedance (X1O) Probe, HP 1124A (or Equal) Required with Item 43, Spectrum Analyzer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>D</td>
<td>Video Amplifier, HP461A, is required with some Deviation Meters (Item 27) Marconi TF2300 Series do not require Video Amplifier</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE

REF CODES

50 THRU 100

DELETED

| 101 | D | Adapter UG-274B/U | 5935-00-201-2411 | |
| 102 | D | Alignment Cover Set, Consisting of: (Fabricate per DMWR 11-5820-401) A1000A; A1200; A3300A; A3600A; A4100A; A4200A; A6000A; A8100A; A8200A | | |
TOOL AND TEST EQUIPMENT REQUIREMENTS

FOR

RADIO-TRANSMITTERS RT-246A/VRC, RT-524A/VRC AND RADIO-RECEIVER R-442A/VRC (Cont)

<table>
<thead>
<tr>
<th>TOOL TEST EQUIPMENT REF CODE</th>
<th>MAINT CATEGORY</th>
<th>NOMENCLATURE</th>
<th>NATIONAL STOCK NUMBER</th>
<th>TOOL NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>F,H,D</td>
<td>Test Cable No. 1</td>
<td>6625-00-880-4149</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>F,H,D</td>
<td>Test Cable No. 2</td>
<td>6625-00-880-5209</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>F,H,D</td>
<td>Test Cable No. 3</td>
<td>6625-40-880-5215</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>F,H,D</td>
<td>Test Cable No. 4</td>
<td>6625-40-880-5216</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>F,H,D</td>
<td>Test Cable No. 5</td>
<td>6625-00-880-6079</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>F,H,D</td>
<td>Test Cable No. 6</td>
<td>6625-00-880-6081</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>F,H,D</td>
<td>Test Cable No. 7</td>
<td>6625-00-880-6095</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>F,H,D</td>
<td>Test Cable No. 8</td>
<td>6625-00-880-6097</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>F,H,D</td>
<td>Test Cable No. 9</td>
<td>6625-00-880-6152</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>D</td>
<td>Test Cable No. 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>D</td>
<td>Test Cable No. 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>D</td>
<td>Test Cable No. 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>D</td>
<td>Test Cable No. 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>D</td>
<td>Test Cable No. 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>D</td>
<td>Test Cable No. 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>D</td>
<td>Test Cable No. 17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>D</td>
<td>Cable Assy, RF CG-409/U Series</td>
<td>5995-00-823-2865</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>D</td>
<td>Cable Assy Special Purpose, Electrical CX-7059/VRC (5 ft)</td>
<td>5995-00-823-2865</td>
<td></td>
</tr>
</tbody>
</table>
TOOL AND TEST EQUIPMENT REQUIREMENTS

FOR

RADIO-TRANSMITTERS RT-246A/VRC, RT-524A/VRC

AND RADIO-RECEIVER R-442A/VRC (Cont)

<table>
<thead>
<tr>
<th>TOOL/TEST EQUIPMENT REF CODE</th>
<th>MAINT CATEGORY</th>
<th>NOMENCLATURE</th>
<th>NATIONAL STOCK NUMBER</th>
<th>TOOL NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td>D</td>
<td>Adapter UG-201/U</td>
<td>5935-00-259-0205</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>D</td>
<td>Adapter UG-914</td>
<td>5935-00-250-4680</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>D</td>
<td>Microphone M-80/GR</td>
<td>5965-00-179-7762</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>D</td>
<td>Loudspeaker LS-454/U</td>
<td>5965-00-876-2375</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>D</td>
<td>Attenuator CN-796/U</td>
<td>5985-00-087-2597</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>D</td>
<td>Pln Extractor Tools (For P401-1 P351, etc.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P/N 098-0300-000 (Post Tool); P/N 115-0040-000 (Tip Tool) Viking Industries, Chatsworth, CA 91311</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>D</td>
<td>PAD, 20 DB, 50-Ohm (Fabricate per DMWR 11-5820-401)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>D</td>
<td>AI 200 Test Card, TAD # (TAD: Tobyhanna Army Depot, PA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>D</td>
<td>AI 400 Test Card, TAD #</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>D</td>
<td>Torque Wrench: 0-36 oz in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>D</td>
<td>Torque Wrench: 0-75 oz in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>D</td>
<td>Tool Kit, Electronic Repairman</td>
<td>5180-00-532-9112</td>
<td></td>
</tr>
</tbody>
</table>

NOTE

REF CODES 133 THRU 200 DELETED

Change 3 B-39
TOOL AND TEST EQUIPMENT REQUIREMENTS

FOR

RADIO-TRANSMITTERS RT-246/VRC, RT-524A/VRC

AND RADIO-RECEIVER R-442A/VRC (Cont)

<table>
<thead>
<tr>
<th>TOOL/TEST EQUIPMENT REF CODE</th>
<th>MAINT CATEGORY</th>
<th>NOMENCLATURE</th>
<th>NATIONAL STOCK NUMBER</th>
<th>TOOL NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>D</td>
<td>FIXTURES</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intermediate Gear Train Alignment and Holding Fixture TAD#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>D</td>
<td>Heat Exchanger Alignment and Test Fixture TAD# AN/VRC-12-999-Head</td>
<td></td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>D</td>
<td>A1 000A (VHF Tuner) Alignment and Test Fixture TAD# AN/VRC-12-012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>D</td>
<td>A3000 (CRS Tray) Alignment and Test Fixture TAD# AN/VRC-12-007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>D</td>
<td>A4000 (RCVR IF Tray) Alignment and Test Fixture TAD# AN/VRC-12-003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>D</td>
<td>A5000 (RCVR Audio Amp) Alignment and Test Fixture TAD# AN/VRC-12-995</td>
<td></td>
<td></td>
</tr>
<tr>
<td>207</td>
<td>D</td>
<td>A6000 (XMTR Master Osc–Buff) Alignment and Test Fixture TAD# AN/VRC-12-996</td>
<td></td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>D</td>
<td>A8000 (XMTR Modulator Tray) Alignment and Test Fixture TAD# AN/VRC-12-001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>209</td>
<td>D</td>
<td>VHF Tuner Module Fixtures: A1100–SM–D–324021, Modified</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A1 200 – SM–D–324022, Modified</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A1300 – SM–D–324023, Modified</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A 1400 – SM–D–324024, Modified</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A 1500 - SM–D–323854, Modified</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A1600 - AN/VRC-12-882</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A1600A (See DMWR 11-5820-401)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A2000 (Reference Oscillator)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>D</td>
<td>Sundial Fixture, A2000A (See DMWR 11-5820-401) TAD# AN/VRC-12-024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>D</td>
<td>A2100 (Voltage Regulator Card) Test Fixture TAD# AN/VRC-12-896, A2100A (See DMWR 11-5820401)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B-40 Change 3
TOOL AND TEST EQUIPMENT REQUIREMENTS FOR

RADIO-TRANSMITTERS RT-246A/VRC, RT-524A/VRC AND RADIO-RECEIVER R-442A/VRC (Cont)

<table>
<thead>
<tr>
<th>TOOL/EQUIPMENT REF CODE</th>
<th>MAINT CATEGORY</th>
<th>NOMENCLATURE</th>
<th>NATIONAL STOCK NUMBER</th>
<th>TOOL NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>213</td>
<td>D</td>
<td>IF Amplifier Module Fixtures: A4100 TAD#, A4200 TAD#, A4300 TAD#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>D</td>
<td>Master Oscillator – Buffer Amplifier Circuit Card Fixtures: A6300 SM-D-323860, A6400 SM-D-323861</td>
<td></td>
<td></td>
</tr>
<tr>
<td>217</td>
<td>D</td>
<td>A9000(),/940(), A, Load Test Fixture TAD# AN/VRC-12-186</td>
<td></td>
<td></td>
</tr>
<tr>
<td>218</td>
<td>D</td>
<td>A7000 (Autotuning) Fixtures: A7200 - TAD# AN/VRC-12-906</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TOOL AND TEST EQUIPMENT REQUIREMENTS

FOR

RADIO TRANSMITTERS RT–246A/VRC AND RT–524A/VRC,
AND RADIO–RECEIVER R–442A/VRC (Cont)

<table>
<thead>
<tr>
<th>TOOL/TEST EQUIPMENT REF CODE</th>
<th>MAINT CATEGORY</th>
<th>NOMENCLATURE</th>
<th>NATIONAL STOCK NUMBER</th>
<th>TOOL NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>219</td>
<td>D</td>
<td>RT–246A and RT–524A Control Assy Fixtures (Front Panel): Front Panel Panel Fixture, TAD#514 Microswitch Fixture, TAD#Final Overall Radio Test Fixture, TAD#AN/VRC–12–040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>D</td>
<td>R–442(*)/VRC Control Assy Fixtures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>D</td>
<td>Magnavox Fixture T–19454</td>
<td></td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>D</td>
<td>Magnavox Fixture T–19433</td>
<td></td>
<td></td>
</tr>
<tr>
<td>223</td>
<td>D</td>
<td>Magnavox Fixture T–19162</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section XV REMARKS

<table>
<thead>
<tr>
<th>REFERENCE CODE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Operational check as part of system.</td>
</tr>
<tr>
<td>B</td>
<td>Bench test to determine source of fault.</td>
</tr>
<tr>
<td>C</td>
<td>Includes gear trains and wiring.</td>
</tr>
<tr>
<td>D</td>
<td>By replacement of modules, relays, and selected individual components.</td>
</tr>
<tr>
<td>E</td>
<td>These items appear without maintenance function or categories to provide for clarity and compatibility between this document and the RPSTL.</td>
</tr>
<tr>
<td>F</td>
<td>Alinement as part of the RT or RCVR. Includes replacement of cores, slugs, and locking strips.</td>
</tr>
<tr>
<td>G</td>
<td>Repair as part of the RT or RCVR by rewiring and/or replacement of hardware and components.</td>
</tr>
<tr>
<td>H</td>
<td>By replacement of selected subassemblies.</td>
</tr>
<tr>
<td>I</td>
<td>By replacement of connectors, conductors, relay sockets, etc.</td>
</tr>
<tr>
<td>J</td>
<td>By replacement of individual wire, cables, switch assembly, and selected components.</td>
</tr>
<tr>
<td>K</td>
<td>By replacement of modules, parent board assembly, and parent board assembly pins.</td>
</tr>
<tr>
<td>L</td>
<td>By replacement of parent board assembly, parent board pins, and connector.</td>
</tr>
<tr>
<td>M</td>
<td>By replacement of elements of chassis assembly and/or connector.</td>
</tr>
<tr>
<td>N</td>
<td>By replacement of parent board assembly.</td>
</tr>
<tr>
<td>O</td>
<td>By replacement of selected piece parts and assemblies.</td>
</tr>
<tr>
<td>P</td>
<td>For continuity and power transistor tests.</td>
</tr>
<tr>
<td>Q</td>
<td>By replacement of tube, switch, and attaching hardware.</td>
</tr>
<tr>
<td>R</td>
<td>By replacement of external components and bushings.</td>
</tr>
<tr>
<td>S</td>
<td>By replacement of attaching hardware and packing.</td>
</tr>
<tr>
<td>REFERENCE CODE</td>
<td>REMARKS</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>T</td>
<td>By replacement of relays, external switches, knobs, packings, and attaching hardware.</td>
</tr>
<tr>
<td>U</td>
<td>By replacement of switch circuit boards, connectors, selected mechanical parts, and wiring.</td>
</tr>
<tr>
<td>V</td>
<td>By replacement of chassis, connectors, wiring, and circuit card.</td>
</tr>
<tr>
<td>W</td>
<td>When installed, to repair front panel damage.</td>
</tr>
<tr>
<td>X</td>
<td>“Plain” and “A” model assemblies are interchangeable.</td>
</tr>
<tr>
<td>Y</td>
<td>“Plain” and “A” model assemblies are physically and electrically interchangeable but require different adjustments.</td>
</tr>
<tr>
<td>AB</td>
<td>Subassemblies are not directly interchangeable between “Plain” and "A" models.</td>
</tr>
<tr>
<td>AC</td>
<td>Power transistors must be replaced as pairs.</td>
</tr>
<tr>
<td>AD</td>
<td>For replacement of entire cover assembly, use cover provided on RT-246, (80063) SM-D-414288,</td>
</tr>
<tr>
<td>AE</td>
<td>For replacement, unit will be assembled from subassemblies of this functional group.</td>
</tr>
<tr>
<td>AF</td>
<td>By replacement of knobs and lamps.</td>
</tr>
<tr>
<td>AG</td>
<td>When installed, handles are to remain installed during shipment to and from DS level.</td>
</tr>
</tbody>
</table>
Section XVI MAINTENANCE ALLOCATION CHART

FOR

ANTENNA AT-912/VRC

<table>
<thead>
<tr>
<th>(1) GROUP NUMBER</th>
<th>(2) COMPONENT/ASSEMBLY</th>
<th>(3) MAINTENANCE FUNCTION</th>
<th>(4) MAINTENANCE CATEGORY</th>
<th>(5) TOOLS AND EQPT</th>
<th>(6) REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>ANTENNA AT-912/VRC</td>
<td>Inspect</td>
<td>0.1</td>
<td></td>
<td>See Sect XVII</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Install</td>
<td>0.5</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test</td>
<td>0.2</td>
<td></td>
<td>2 thru 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overhaul</td>
<td>1.0</td>
<td></td>
<td>6 thru 22</td>
</tr>
<tr>
<td>01</td>
<td>ANTENNA ELEMENTS AT-1095/VRC, AT-1096/VRC</td>
<td>Replace</td>
<td>0.5</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>ANTENNA MATCHING UNIT-BASE MX-2799/VRC</td>
<td>Install</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td>0.5</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overhaul</td>
<td>2.0</td>
<td></td>
<td>6 thru 22</td>
</tr>
<tr>
<td>03</td>
<td>BASE, ANTENNA SUPPORT AB-719/VRC</td>
<td>Install</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace</td>
<td>0.2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section XVII TOOL AND TEST EQUIPMENT REQUIREMENTS FOR ANTENNA AT-912/VRC

<table>
<thead>
<tr>
<th>TOOLS OR TEST EQUIPMENT REF CODE</th>
<th>MAINTENANCE CATEGORY</th>
<th>NOMENCLATURE</th>
<th>NATIONAL/NATO STOCK NUMBER</th>
<th>TOOL NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>Tool Kit, Electronic Equipment TK-101/G</td>
<td>5180-00-064-5178</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>Test Set, Radio AN/PRM-34</td>
<td>6625-01-094-5646</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>Meter, RF Power AN/URM-182 or URM-182A</td>
<td>6625-00-148-9371</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>Multi meter TS-352B/U</td>
<td>6625-00-553-0142</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>Multimeter AN/URM-105</td>
<td>6625-00-581-2036</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>D</td>
<td>Multimeter ME-26B/U</td>
<td>8625-00-648-9409</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>D</td>
<td>Digital Readout, Electronic Counter AN/USM-207</td>
<td>6825-00-911-6368</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>D</td>
<td>Amplifier, Radio Frequency AM-3495/U</td>
<td>6625-00-985-8891</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>Unit Oscillator: General Radio, Type 1211-B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>D</td>
<td>Unit Oscillator: General Radio, Type 1215-B (2 ea)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>D</td>
<td>Unit Regulated Power Supply: General Radio, Type 1201-A (2 ea)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>D</td>
<td>Unit IF Amplifier: General Radio, Type 1216-A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>D</td>
<td>Mixer-Rectifier: General Radio, Type 874-MR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>D</td>
<td>UHF Admittance Meter: General Radio, Type 1602-B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Change 1
<table>
<thead>
<tr>
<th>TOOLS OR TEST EQUIPMENT REF CODE</th>
<th>MAINTENANCE CATEGORY</th>
<th>NOMENCLATURE</th>
<th>NATIONAL/NATO STOCK NUMBER</th>
<th>TOOL NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>D</td>
<td>Generator, Signal AN/USM-44</td>
<td>6625-00-539-9685</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>D</td>
<td>Radio Interference Measuring Set AN/URM-85</td>
<td>6625-00-776-0595</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>D</td>
<td>PowerSupply PP-1104/Q</td>
<td>6130-00-542-6385</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>D</td>
<td>Receiver, Transmitter, Radio RT-524/VRC</td>
<td>5820-00-892-0622</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>D</td>
<td>Wattmeter, Bird Model 814</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>D</td>
<td>Ground Plane, 10 ft X 10 ft Sheet Capper 80 Screen Capper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>D</td>
<td>MX-2799/VRC Allnment Cover (Locally Fabricate: DMWR 11-5820-401-5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>D</td>
<td>Adapter General Radio, (GR 874-2BPA (2 ea)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>D</td>
<td>Termination, 50-Ohms, General Radio GR 1602-P4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>D</td>
<td>Switch Assembly (Locally Fabricate: DMWR 11-5820-401-4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>O</td>
<td>Digital Multimeter AN/PSM-45</td>
<td>6625-01-139-2512</td>
<td></td>
</tr>
</tbody>
</table>
Section XVIII MAINTENANCE ALLOCATION CHART

CONTROL, FREQUENCY SELECTOR C-2742/VRC

<table>
<thead>
<tr>
<th>(1) GROUP NUMBER</th>
<th>(2) COMPONENT/ASSEMBLY</th>
<th>(3) MAINTENANCE FUNCTION</th>
<th>(4) MAINTENANCE CATEGORY</th>
<th>(5) TOOLS AND EQPT</th>
<th>(6) REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>CONTROL, FREQUENCY SELECTOR C-2742/VRC</td>
<td>Inspect</td>
<td>0.10</td>
<td>0.10</td>
<td>(see Sect XIX)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Install</td>
<td>0.20</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test</td>
<td></td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.1</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overhaul</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

(See sect xx)
Section XIX TOOL AND TEST EQUIPMENT REQUIREMENTS
FOR
CONTROL, FREQUENCY SELECTOR

<table>
<thead>
<tr>
<th>TOOLS OR TEST EQUIPMENT REF CODE</th>
<th>MAINTENANCE CATEGORY</th>
<th>NOMENCLATURE</th>
<th>NATIONAL/NATO STOCK NUMBER</th>
<th>TOOL NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O</td>
<td>Tool Kit, Electronic Equipment TK-101/G</td>
<td>5180-00-064-5178</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>Tool Kit, Electronic Equipment TK-100/G</td>
<td>5180-00-605-0079</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>O,F,D</td>
<td>Multimeter TS-352B/U</td>
<td>6625-00-553-0142</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>F,D</td>
<td>Power Supply PP-1104/U</td>
<td>8130-00-542-6385</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>O,F,D</td>
<td>Digital Multimeter AN/PSM-45</td>
<td>6625-01-139-2512</td>
<td></td>
</tr>
</tbody>
</table>
Section XX REMARKS (C-2742/VRC)

<table>
<thead>
<tr>
<th>REFERENCE CODE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Operational test.</td>
</tr>
<tr>
<td>B</td>
<td>Repair by replacing knobs, indicator lens, lamp, receptacle covers, mounting hardware, and cover assembly.</td>
</tr>
<tr>
<td>(1) GROUP NUMBER</td>
<td>(2) COMPONENT/ASSEMBLY</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>00</td>
<td>CONTROL, RADIO SET C-2299/VRC</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(See Sect XXII) A
(See Sect XXII) B
Section XXII TOOL AND TEST EQUIPMENT REQUIREMENTS
FOR
CONTROLS, RADIO SET C-2299/VRC

<table>
<thead>
<tr>
<th>TOOLS OR TEST EQUIPMENT REF CODE</th>
<th>MAINTENANCE CATEGORY</th>
<th>NOMENCLATURE</th>
<th>NATIONAL/NATO STOCK NUMBER</th>
<th>TOOL NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O</td>
<td>Tool Kit, Electronic Equipment TK-101/G</td>
<td>5180-00-064-5178</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>O,F</td>
<td>Tool Kit, Electronic Equipment TK-100/G</td>
<td>5180-00-605-0079</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>Multimeter TS-352B/U</td>
<td>6625-00-553-0142</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>Power Supply PP-1104/U</td>
<td>6130-00-542-6365</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>D</td>
<td>Analyzer, Spectrum TS-723B/U</td>
<td>6625-00-668-9418</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>D</td>
<td>Generator, Signal AN/URM-127</td>
<td>6625-00-763-5965</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>D</td>
<td>Oscilloscope AN/USM-281A</td>
<td>6625-00-228-2201</td>
<td></td>
</tr>
<tr>
<td>REFERENCE CODE</td>
<td>REMARKS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Repair by replacing knobs, receptacle covers, and mounting hardware.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Operational tests.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section XXIV MAINTENANCE ALLOCATION CHART

MOUNTING MT-1029/VRC

<table>
<thead>
<tr>
<th>(1) GROUP NUMBER</th>
<th>(2) COMPONENT/ASSEMBLY</th>
<th>(3) MAINTENANCE FUNCTION</th>
<th>(4) MAINTENANCE CATEGORY</th>
<th>(5) TOOLS AND EQPT</th>
<th>(6) REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>MOUNTING MT-1029/VRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inspect</td>
<td>C 0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Install</td>
<td>O 0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test</td>
<td>F 0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>H 0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test</td>
<td>D 0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overhaul</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(See Sect XXV)

A

Remarks:

- 1
- 2
- 1,2
- 3
- 4
- 3,4

Change 1
Section XXV TOOL AND TEST EQUIPMENT REQUIREMENTS FOR MOUNTING MT-1029/VRC

<table>
<thead>
<tr>
<th>TOOLS OR TEST EQUIPMENT REF CODE</th>
<th>MAINTENANCE CATEGORY</th>
<th>NOMENCLATURE</th>
<th>NATIONAL/NATO STOCK NUMBER</th>
<th>TOOL NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>Tool Kit, Electronic Equipment TK-101/G</td>
<td>5180-00-064-5178</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>Multimeter AN/URM-105</td>
<td>6625-00-581-2036</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>O,F,D</td>
<td>Multimeter TS-352B/U</td>
<td>6625-00-553-0142</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>F,D</td>
<td>Tool Kit, Electronic Equipment TK-100/G</td>
<td>5180-00-605-0079</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>O,F,D</td>
<td>Digital Multimeter AN/PSM-45</td>
<td>6625-01-139-2512</td>
<td></td>
</tr>
</tbody>
</table>
Section XXVI REMARKS (MT-1029/VRC)

<table>
<thead>
<tr>
<th>REFERENCE CODE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Repair by replacing shock mounts and rewiring terminal board.</td>
</tr>
</tbody>
</table>
Section XXVII MAINTENANCE ALLOCATION CHART

MOUNTING MT-1898/VRC

<table>
<thead>
<tr>
<th>(1) GROUP NUMBER</th>
<th>(2) COMPONENT/ASSEMBLY</th>
<th>(3) MAINTENANCE FUNCTION</th>
<th>(4) MAINTENANCE CATEGORY</th>
<th>(5) TOOLS AND EQPT</th>
<th>(6) REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>MOUNTING MT-1898/VRC</td>
<td>Inspect</td>
<td>0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Install</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test</td>
<td>0.50</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td></td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test</td>
<td>0.50</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair</td>
<td>0.50</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overhaul</td>
<td>1.00</td>
<td>3,4</td>
<td></td>
</tr>
</tbody>
</table>

(See Sect XXVIII)
Section XXVIII TOOL AND TEST EQUIPMENT REQUIREMENTS
MOUNTING MT-1898/VRC

<table>
<thead>
<tr>
<th>TOOLS OR TEST EQUIPMENT REF CODE</th>
<th>MAINTENANCE CATEGORY</th>
<th>NOMENCLATURE</th>
<th>NATIONAL/NATO STOCK NUMBER</th>
<th>TOOL NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>Tool Kit, Electronic Equipment TK-101/G</td>
<td>5180-00-064-5178</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>Multimeter AN/URM-105</td>
<td>6625-00-581-2036</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>O,F,D</td>
<td>Multimeter TS-352B/U</td>
<td>6625-00-553-0142</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>F,D</td>
<td>Tool Kit, Electronic Equipment TK-100/G</td>
<td>5180-00-605-0079</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>O,F,D</td>
<td>Digital Multimeter AN/PSM-45</td>
<td>6625-01-139-2512</td>
<td></td>
</tr>
<tr>
<td>REFERENCE CODE</td>
<td>REMARKS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Repair by replacing shock mounts and rewiring terminal board.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX C
EXPENDABLE SUPPLIES AND MATERIALS LIST

Section I INTRODUCTION

C-1. SCOPE.

This appendix lists expendable supplies and materials you will need to operate and maintain the AN/VRC-12 series radios. These items are authorized to you by CTA 50-970, Expendable items (except medical, class V, repair parts, and heraldic items).

C-2. EXPLANATION OF COLUMNS.

a. Column 1, Item Number. This number is assigned to the entry in the listing and is referenced in the narrative instructions to identify the material (e.g., use cleaning compound, item 1, appendix E).

b. Column 2, Level. This column identifies the lowest level of maintenance that requires the listed item.

C - Operator/Crew
O- Organizational

c. Column 3, National Stock Number. This is the national stock number assigned to the item; use it to request or requisition the item.

d. Column 4, Description. Indicates the federal item name and, if required, a description to identify the item. The last line for each item indicates the Federal Supply Code for Manufacturer (FSCM) in parentheses, if applicable.

e. Column 5, Unit of Measure (U/M). Indicates the measure used in performing the actual maintenance function. This measure is expressed by a two-character abbreviation (e.g., ea, in., pr). If the unit of measure differs from the unit of issue, requisition the lowest unit of issue that will satisfy your requirements.
Section II EXPENDABLE SUPPLIES AND MATERIALS LIST

<table>
<thead>
<tr>
<th>(1) ITEM NUMBER</th>
<th>(2) LEVEL</th>
<th>(3) NATIONAL STOCK NUMBER</th>
<th>(4) DESCRIPTION (FSCM)</th>
<th>(5) U/M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>c</td>
<td>6850-00-880-7616</td>
<td>Silicone Compound</td>
<td>tube (8 OZ)</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>9505-00-293-4208</td>
<td>Wire, Nonelectrical (Safety Wire)</td>
<td>lb</td>
</tr>
<tr>
<td>3</td>
<td>o</td>
<td>5970-00-816-6056</td>
<td>Insulation Tape, Electrical, Plastic</td>
<td>ft</td>
</tr>
<tr>
<td>4</td>
<td>o</td>
<td>7510-00-290-8036</td>
<td>Pressure Sensitive Tape, Filament Reinforced</td>
<td>yd (60)</td>
</tr>
<tr>
<td>5</td>
<td>c</td>
<td>6850-00-105-3084</td>
<td>Cleaning Compound, Freon TF (Trichlorotrifluoroethane)</td>
<td>(16)</td>
</tr>
<tr>
<td>6</td>
<td>o</td>
<td>6850-00-984-5853</td>
<td>Cleaning Compound, Freon PCA (Trichlorotrifluoroethane)</td>
<td>gal. (5)</td>
</tr>
<tr>
<td>7</td>
<td>c</td>
<td>5330-00-905-6032</td>
<td>O-Ring 80063</td>
<td>ea</td>
</tr>
</tbody>
</table>

C-2 Change 1
GLOSSARY

Section I ABBREVIATIONS

ant antenna
ant cont antenna connection
aux auxiliary
chan sel channel select
ckt-brk circuit breaker
dc direct current
fm frequency modulated
hi high
HZ hertz
int intercom
kc kilocycles
kHz kilohertz
lo low
mc megacycles
MHz megahertz
pwr power
rad trans radio transmission
retrans retransmission
r' radio frequency
RT radio transmitter
rw radio wire
rwi radio wire integration
spkr speaker
sw switch
vdc voltage direct current
VRC vehicle radio communications

Section II DEFINITION OF UNUSUAL TERMS

CONFIGURATION. A combination of AN/VRC-12 Radio Set components installed in a specific vehicle.

CONTROLLED AUDIO. A received audio signal that is not amplified by the Interphone Amplifier A-250 of the AM-1780/VRC.

CONTROL BOX. A component located remotely from the RT which can be used to control communication and may provide a connection for audio accessories.

DEMODULATION. The process in a receiver of removing a carrier frequency from the audio signal so that the audio signal remains.

DUPLEX. Mode of radio operation in which both reception and transmission can be performed at the same time.

FIXED AUDIO. A received audio signal which is amplified by the Interphone Amplifier A250 of the AM-1780/VRC.

FORWARD POWER. The strength of an rf signal from a transmitter radiated by its antenna.
DEFINITION OF UNUSUAL TERMS (CONT)

FREQUENCY MODULATION. A type of radio transmission in which the frequency of an rf carrier wave is varied in accordance with a modulating signal while the amplitude of the carrier wave remains constant.

IMPEDANCE. The opposition of a circuit to the flow of alternating current, measured in ohms.

MATCHING UNIT. A component of an RT antenna system which electrically matches the impedance of the antenna to the frequency at which the RT is tuned so that the antenna may radiate the rf signal with the greatest efficiency. May also be used to physically mount the antenna elements.

MODULATION. The process of varying some characteristic, such as the frequency, of a continuous wave (carrier) in accordance with a modulating signal such as an audio signal.

MUTING. Reduction of speaker output (loudness) to prevent acoustic feedback to an audio accessory microphone.

OPERATIONAL CHECK. A test or series of tests of a radio set which checks the performance of the radio set and its components under controlled operating conditions to determine combat readiness of the radio set.

Orientation. Positioning of connected cables so that they do not interfere with other cables or crewmember activity.

RADIO SET. Any configuration of components installed in a vehicle which provide communication to a station distant from the vehicle.

REFLECTED POWER. The strength of an incoming rf signal passed by a receiver antenna to the receiver.

REMOTE CONTROL. The operation of the radio set by remotely located components.

RETRANSMISSION. The arrangement of two radio sets connected together to provide automatic retransmission of signals between two radios that are too far apart to communicate directly with each other.

ROUTING. Path taken by cables to interconnect a radio set within a vehicle.

SIDETONE. The sound of user’s own voice heard in earphone or loudspeaker while speaking into microphone.

SIMPLEX. Mode of radio set operation in which either transmission or reception only is performed at any one time.

SQUELCH. A receiver circuit which automatically turns the sound off when no antenna signal is present and turns it on when an antenna signal is present.

X-MODE. A mode of operation which provides for secure communication between stations.

*.Symbol used when basic model number refers to all models of the equipment.
INDEX

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrative storage</td>
<td>1-2</td>
</tr>
<tr>
<td>preparation for</td>
<td>3-176</td>
</tr>
<tr>
<td>Antennas</td>
<td></td>
</tr>
<tr>
<td>AS-1729</td>
<td></td>
</tr>
<tr>
<td>changing length of MX-6707 tip contact</td>
<td>2-14</td>
</tr>
<tr>
<td>description</td>
<td>1-17</td>
</tr>
<tr>
<td>drainage of water from MX-6707</td>
<td>3-153</td>
</tr>
<tr>
<td>inspection of tip contact of MX-6707</td>
<td>2-14</td>
</tr>
<tr>
<td>installation of MX-6707</td>
<td>2-18</td>
</tr>
<tr>
<td>removal of AS-1730 and AT-1095</td>
<td>3-155</td>
</tr>
<tr>
<td>removal of MX-6707</td>
<td>3-154</td>
</tr>
<tr>
<td>AT-912</td>
<td></td>
</tr>
<tr>
<td>changing length of MX-2799 tip contact</td>
<td>2-16</td>
</tr>
<tr>
<td>description</td>
<td>1-17</td>
</tr>
<tr>
<td>inspection of tip contact of MX-2799</td>
<td>2-15</td>
</tr>
<tr>
<td>installation of MX-2799 and cable connections</td>
<td>2-22</td>
</tr>
<tr>
<td>removal of AT-1095 and AT-1096</td>
<td>3-156</td>
</tr>
<tr>
<td>removal of MX-2799</td>
<td>3-157</td>
</tr>
<tr>
<td>inspection of lower element horseshoe contact</td>
<td>2-25</td>
</tr>
<tr>
<td>installation of antenna mounting bracket</td>
<td>2-17</td>
</tr>
<tr>
<td>installation of cables</td>
<td>2-21</td>
</tr>
<tr>
<td>installation of tip cap</td>
<td>2-26</td>
</tr>
<tr>
<td>installation of vehicle mounting bracket</td>
<td>2-16</td>
</tr>
<tr>
<td>Antenna elements of AS-1729 and AT-912</td>
<td></td>
</tr>
<tr>
<td>assembly</td>
<td>2-27</td>
</tr>
<tr>
<td>securing to matching unit</td>
<td>2-28</td>
</tr>
<tr>
<td>Antenna tiedown procedure</td>
<td>2-29</td>
</tr>
<tr>
<td>Audio accessories</td>
<td></td>
</tr>
<tr>
<td>description</td>
<td>1-25</td>
</tr>
<tr>
<td>Auxiliary receiver antenna</td>
<td></td>
</tr>
<tr>
<td>description</td>
<td>1-20</td>
</tr>
<tr>
<td>installation and cabling</td>
<td>2-30</td>
</tr>
<tr>
<td>installation and cabling of AB-15 and AB-558</td>
<td>2-31</td>
</tr>
<tr>
<td>installation of mounting bracket</td>
<td>2-30</td>
</tr>
<tr>
<td>installation of MS-118 and tip cap</td>
<td>2-33</td>
</tr>
<tr>
<td>removal of AB-15</td>
<td>3-159</td>
</tr>
<tr>
<td>removal of AB-558</td>
<td>3-159</td>
</tr>
<tr>
<td>removal of MS-116, MS-117 and MS-118</td>
<td>3-158</td>
</tr>
<tr>
<td>removal of tip cap</td>
<td>3-160</td>
</tr>
<tr>
<td>replacement of MS-116, MS-117 and MS-118 with AT-1095</td>
<td>3-158</td>
</tr>
<tr>
<td>Auxiliary Receiver R-442(*)/VRC</td>
<td></td>
</tr>
<tr>
<td>description</td>
<td>1-19</td>
</tr>
<tr>
<td>installation and cabling</td>
<td>2-40</td>
</tr>
</tbody>
</table>
INDEX (CONT)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable routing and plug orientation</td>
<td>2-6</td>
</tr>
<tr>
<td>Cables repair</td>
<td>3-170</td>
</tr>
<tr>
<td>schematics</td>
<td></td>
</tr>
<tr>
<td>CG-1127/U</td>
<td>3-171</td>
</tr>
<tr>
<td>CG-1773 A, B/U</td>
<td>3-171</td>
</tr>
<tr>
<td>CX-4720/VRC</td>
<td>3-172</td>
</tr>
<tr>
<td>CX-4721/VRC</td>
<td>3-173</td>
</tr>
<tr>
<td>CX-4722/VRC</td>
<td>3-174</td>
</tr>
<tr>
<td>CX-4723/VRC</td>
<td>3-175</td>
</tr>
<tr>
<td>testing for adverse opens</td>
<td>3-166</td>
</tr>
<tr>
<td>testing for adverse shorts</td>
<td>3-169</td>
</tr>
<tr>
<td>Cleaning and touchup painting</td>
<td>3-12</td>
</tr>
<tr>
<td>Common tools and equipment</td>
<td></td>
</tr>
<tr>
<td>for installation</td>
<td>2-1</td>
</tr>
<tr>
<td>for maintenance</td>
<td>3-1</td>
</tr>
<tr>
<td>Connecting cable plugs to associated jacks</td>
<td>2-8</td>
</tr>
<tr>
<td>Consolidated index of Army publications and blank forms</td>
<td>1-2</td>
</tr>
<tr>
<td>Cover, removal and replacement of bottom</td>
<td></td>
</tr>
<tr>
<td>R-442</td>
<td>3-150</td>
</tr>
<tr>
<td>RT-246 and RT-524</td>
<td>3-144</td>
</tr>
<tr>
<td>Cover panels, removal and replacement of side and rear</td>
<td></td>
</tr>
<tr>
<td>RT-246 and RT-524</td>
<td>3-142</td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th>Description of components</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS-1729/VRC</td>
<td>1-17</td>
</tr>
<tr>
<td>AT-912/VRC</td>
<td>1-17</td>
</tr>
<tr>
<td>audio accessories</td>
<td>1-25</td>
</tr>
<tr>
<td>auxiliary receiver antenna systems</td>
<td>1-20</td>
</tr>
<tr>
<td>Auxiliary Receiver R-442/VRC</td>
<td>1-19</td>
</tr>
<tr>
<td>Frequency Selector Control Box C-2742/VRC</td>
<td>1-23</td>
</tr>
<tr>
<td>MT-1029/VRC</td>
<td>1-21</td>
</tr>
<tr>
<td>MT-1898/VRC</td>
<td>1-22</td>
</tr>
<tr>
<td>Radio Relay Control Box C-2299/VRC</td>
<td>1-24</td>
</tr>
<tr>
<td>Radio Set AN/VRC/12 series</td>
<td>1-11</td>
</tr>
<tr>
<td>RT-246/VRC</td>
<td>1-15</td>
</tr>
<tr>
<td>RT-524/VRC</td>
<td>1-16</td>
</tr>
<tr>
<td>Destruction of Army electronics material to prevent enemy use</td>
<td>1-2</td>
</tr>
<tr>
<td>Differences between models</td>
<td>1-28</td>
</tr>
<tr>
<td>Discrepancy in shipment report</td>
<td>1-2</td>
</tr>
</tbody>
</table>

E

<table>
<thead>
<tr>
<th>Equipment data</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment description and data</td>
<td>1-5</td>
</tr>
</tbody>
</table>

Index 2
INDEX (CONT)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Flyable storage, preparation for ..</td>
<td>3-177</td>
</tr>
<tr>
<td>Frequency Selector Control Box C-2742, description of</td>
<td>1-23</td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>General information ...</td>
<td>1-1</td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Handle assembly, installation of ..</td>
<td>3-142</td>
</tr>
<tr>
<td>Hand receipt manual ...</td>
<td>1-4</td>
</tr>
<tr>
<td>How to use a flow chart ..</td>
<td>3-16</td>
</tr>
<tr>
<td>How to use this manual ..</td>
<td>1-1</td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>Identifying and tagging cable connections ..</td>
<td>2-5</td>
</tr>
<tr>
<td>Installation procedures ...</td>
<td></td>
</tr>
<tr>
<td>auxiliary receiver antenna ..</td>
<td></td>
</tr>
<tr>
<td>Auxiliary Receiver R-442(*)/VRC ..</td>
<td>2-40</td>
</tr>
<tr>
<td>determining position of power control link of a radio mount</td>
<td>2-42</td>
</tr>
<tr>
<td>determining position of X-MODE switch of an RT</td>
<td>2-42</td>
</tr>
<tr>
<td>determining position of X-MODE switch of R-442</td>
<td>2-44</td>
</tr>
<tr>
<td>general information ..</td>
<td>2-3</td>
</tr>
<tr>
<td>inspecting link position in MT-1029 and MT-1898</td>
<td>2-12</td>
</tr>
<tr>
<td>MT-1029</td>
<td></td>
</tr>
<tr>
<td>with Vinson J-Box C-3513 ..</td>
<td>2-11</td>
</tr>
<tr>
<td>without Vinson J-Box C-3513 ..</td>
<td>2-9</td>
</tr>
<tr>
<td>MT-1898</td>
<td></td>
</tr>
<tr>
<td>with Vinson J-Box C-3514 ..</td>
<td>2-11</td>
</tr>
<tr>
<td>without Vinson J-Box C-3514 ..</td>
<td>2-10</td>
</tr>
<tr>
<td>Radio Set Control C-2299 ...</td>
<td>2-38</td>
</tr>
<tr>
<td>Radio Set Control C-2742 ...</td>
<td>2-37</td>
</tr>
<tr>
<td>RT Antennas AS-1729 and AT-912 ...</td>
<td>2-14</td>
</tr>
<tr>
<td>RT-246()/VRC and RT-524()/VRC ...</td>
<td>2-34</td>
</tr>
<tr>
<td>service upon receipt ..</td>
<td>2-2</td>
</tr>
<tr>
<td>tools and materials ..</td>
<td></td>
</tr>
<tr>
<td>common tools and equipment ..</td>
<td>2-1</td>
</tr>
<tr>
<td>special tools and materials ..</td>
<td>2-1</td>
</tr>
<tr>
<td>Intermediate storage, preparation for ..</td>
<td>3-177</td>
</tr>
<tr>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>equipment description and data ..</td>
<td>1-4</td>
</tr>
<tr>
<td>general information ..</td>
<td>1-1</td>
</tr>
<tr>
<td>principles of operation ...</td>
<td>1-32</td>
</tr>
</tbody>
</table>

Index 3
INDEX (CONT)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location of major components and cabling</td>
<td></td>
</tr>
<tr>
<td>M151</td>
<td>1-27</td>
</tr>
<tr>
<td>M882</td>
<td>1-26</td>
</tr>
<tr>
<td>Maintenance procedures</td>
<td></td>
</tr>
<tr>
<td>Maintenance forms, records and records</td>
<td>1-2</td>
</tr>
<tr>
<td>Antennas</td>
<td></td>
</tr>
<tr>
<td>AS-1729</td>
<td>3-155</td>
</tr>
<tr>
<td>AT-912</td>
<td>3-156</td>
</tr>
<tr>
<td>Auxiliary Receiver Antennas</td>
<td></td>
</tr>
<tr>
<td>AB-15</td>
<td>3-159</td>
</tr>
<tr>
<td>AB-558</td>
<td>3-159</td>
</tr>
<tr>
<td>AB-15 cables</td>
<td>3-188</td>
</tr>
<tr>
<td>MT-1029 and MT-1898</td>
<td>3-160</td>
</tr>
<tr>
<td>operational check</td>
<td></td>
</tr>
<tr>
<td>using Test Set AN/PRM-34</td>
<td>3-87</td>
</tr>
<tr>
<td>using Test Set AN/URM-182</td>
<td>3-89</td>
</tr>
<tr>
<td>Radio Relay Box C-2299</td>
<td>3-164</td>
</tr>
<tr>
<td>Remote Control Box C-2742</td>
<td>3-166</td>
</tr>
<tr>
<td>R-442/VRC</td>
<td>3-149</td>
</tr>
<tr>
<td>RT-246/VRC and RT-524/VRC</td>
<td>3-141</td>
</tr>
<tr>
<td>Model numbers and equipment names</td>
<td></td>
</tr>
<tr>
<td>MT-1029/VRC and MT-1898/VRC</td>
<td>1-1</td>
</tr>
<tr>
<td>description</td>
<td></td>
</tr>
<tr>
<td>MT-1029</td>
<td>1-21</td>
</tr>
<tr>
<td>MT-1898</td>
<td>1-22</td>
</tr>
<tr>
<td>inspecting link position</td>
<td></td>
</tr>
<tr>
<td>installation</td>
<td></td>
</tr>
<tr>
<td>MT-1029</td>
<td></td>
</tr>
<tr>
<td>with Vinson J-Box C-3513</td>
<td>2-11</td>
</tr>
<tr>
<td>without Vinson J-Box C-3513</td>
<td>2-9</td>
</tr>
<tr>
<td>MT-1898</td>
<td></td>
</tr>
<tr>
<td>with Vinson J-Box C-3514</td>
<td>2-11</td>
</tr>
<tr>
<td>without Vinson J-Box C-3514</td>
<td>2-10</td>
</tr>
<tr>
<td>removal and installation of top tray</td>
<td></td>
</tr>
<tr>
<td>removal and repair of terminal board</td>
<td></td>
</tr>
<tr>
<td>removal and replacement of shock absorbers</td>
<td></td>
</tr>
<tr>
<td>MX-279</td>
<td></td>
</tr>
<tr>
<td>changing length of tip contact</td>
<td>2-16</td>
</tr>
<tr>
<td>inspecting tip contact</td>
<td>2-15</td>
</tr>
<tr>
<td>removal</td>
<td>3-157</td>
</tr>
</tbody>
</table>
INDEX (CONT)

M (CONT)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MX-6707
changing length of tip contact</td>
<td>2-13</td>
</tr>
<tr>
<td>drainage of water</td>
<td>3-153</td>
</tr>
<tr>
<td>inspecting tip contact</td>
<td>2-14</td>
</tr>
<tr>
<td>installation</td>
<td>2-18</td>
</tr>
<tr>
<td>installation of ground strap</td>
<td>2-20</td>
</tr>
<tr>
<td>installation of reinforcing ring</td>
<td>2-218</td>
</tr>
<tr>
<td>removal</td>
<td>3-152</td>
</tr>
</tbody>
</table>

N

| Nomenclature cross-reference list | 1-3 |

Operational check
using Test Set AN/PRM-34
using Test Set AN/URM-182

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>cabling test set</td>
<td>3-87</td>
</tr>
<tr>
<td>initial adjustments</td>
<td>3-89</td>
</tr>
<tr>
<td>installation checks</td>
<td>3-94</td>
</tr>
<tr>
<td>preset controls</td>
<td>3-90</td>
</tr>
<tr>
<td>verifying operation of test set</td>
<td>3-94</td>
</tr>
<tr>
<td>cabling test set</td>
<td>3-115</td>
</tr>
<tr>
<td>initial adjustments</td>
<td>3-115</td>
</tr>
<tr>
<td>installation checks</td>
<td>3-116</td>
</tr>
</tbody>
</table>

Organizational maintenance

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>maintenance procedures</td>
<td>3-141</td>
</tr>
<tr>
<td>operational check</td>
<td>3-87</td>
</tr>
<tr>
<td>preparation for storage and shipment</td>
<td>3-176</td>
</tr>
<tr>
<td>preventive maintenance checks and services</td>
<td>3-4</td>
</tr>
<tr>
<td>repair parts, special tools, TMDE and support equipment</td>
<td>3-1</td>
</tr>
<tr>
<td>troubleshooting</td>
<td>3-13</td>
</tr>
</tbody>
</table>

Preparation for storage and shipment
Preventive maintenance checks and services
Principles of operation

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>administrative storage</td>
<td>3-176</td>
</tr>
<tr>
<td>flyable storage</td>
<td>3-177</td>
</tr>
<tr>
<td>intermediate storage</td>
<td>3-177</td>
</tr>
<tr>
<td>antenna matching unit, purpose and control</td>
<td>1-36</td>
</tr>
<tr>
<td>A-RT dc power input and distribution</td>
<td>1-32</td>
</tr>
<tr>
<td>audio accessory extension using C-2299</td>
<td>1-46</td>
</tr>
<tr>
<td>aux receiver loudspeaker muting circuit</td>
<td>1-43</td>
</tr>
<tr>
<td>B-receiver, C-receiver and C-RT power input circuit</td>
<td>1-34</td>
</tr>
</tbody>
</table>
INDEX (CONT)

P (CONT)

Principles of operation (cont)
- General .. 1-32
- Radio relay operation (retransmission) using C-2299 ... 1-46
- Receiver signal path .. 1-37
- RF generation in RT, AFC and voice/150-Hz modulation/sidetone circuit 1-44
- RT keying and loudspeaker muting circuit ... 1-42
- RT-246(*)/VRC power circuit control and channel selection from primary and tandem C-2742 ... 1-51
- RT-246(*)/VRC servosystem ... 1-49

Frequency Interference and Frequency Selection .. 1-53
- Purpose and use of equipment ... 1-4
- Purpose of radio sets .. 1-1

Radio mount
- Determining position of power control link ... 2-42

Radio Relay Box C-2299/VRC
- Description .. 1-24
- Installation and cabling ... 2-38
- Removal and replacement ... 3-164
- Removal of knob ... 3-165
- Removal of A80 .. 3-164
- Replacement of A80 .. 3-165

Radio Set AN/VRC-12 series
- Description .. 1-11

Remote Control Box C-2742/VRC
- Description .. 1-23
- Installation and cabling ... 2-37
- Removal and replacement ... 3-166
- Removal of knob ... 3-167

Removal and replacement of
- C-2299 ... 3-164
- C-2742 ... 3-166
- R-442 ... 3-149
- RT-246 and RT-524 ... 3-141

Repair parts .. 3-2
- Repair parts, special tools, TMDE and support equipment .. 3-1

Replacement of knobs and lamps
- R-442 ... 3-152
- RT-246 and RT-524 ... 3-148

Report of packaging and handling deficiencies .. 1-2

Reporting equipment improvement recommendations 1-2

Reporting errors and recommending improvements .. 1-2

Reports of maintenance and equipment status ... 1-2
INDEX (CONT)

<table>
<thead>
<tr>
<th>R (CONT)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-442(*)/VRC</td>
<td></td>
</tr>
<tr>
<td>description</td>
<td>1-19</td>
</tr>
<tr>
<td>determining position of X-MODE switch</td>
<td>2-44</td>
</tr>
<tr>
<td>installation and cabling</td>
<td>2-40</td>
</tr>
<tr>
<td>removal and installation of bottom covers</td>
<td>3-150</td>
</tr>
<tr>
<td>removal and replacement</td>
<td>3-149</td>
</tr>
<tr>
<td>replacement of knobs and lamps</td>
<td>3-152</td>
</tr>
<tr>
<td>setting X-MODE/NORMAL switch</td>
<td>3-151</td>
</tr>
<tr>
<td>RT-246()/VRC and RT-524()/VRC</td>
<td></td>
</tr>
<tr>
<td>description</td>
<td></td>
</tr>
<tr>
<td>RT-246</td>
<td>1-15</td>
</tr>
<tr>
<td>RT-524</td>
<td>1-16</td>
</tr>
<tr>
<td>determining position of X-MODE switch</td>
<td>2-42</td>
</tr>
<tr>
<td>installation and cabling</td>
<td>2-34</td>
</tr>
<tr>
<td>installation of handle assembly</td>
<td>3-142</td>
</tr>
<tr>
<td>removal</td>
<td>3-141</td>
</tr>
<tr>
<td>removal and replacement of bottom cover</td>
<td>3-144</td>
</tr>
<tr>
<td>removal of dirt from heat exchanger and blower assembly</td>
<td>3-145</td>
</tr>
<tr>
<td>removal of side and rear cover panels</td>
<td>3-142</td>
</tr>
<tr>
<td>replacement</td>
<td>3-141</td>
</tr>
<tr>
<td>replacement of knobs, call lamp and dial window lamp</td>
<td>3-146</td>
</tr>
<tr>
<td>replacement of side and rear cover panels</td>
<td>3-143</td>
</tr>
<tr>
<td>setting X-MODE/NORMAL switch</td>
<td>3-148</td>
</tr>
</tbody>
</table>

S

Safety, care and handling	1-31
Scope	1-1
Service upon receipt	2-2
Special installation tools and materials	3-1
Special tools, TMDE and support equipment	

T

Touchup painting	3-12
Troubleshooting	
explanation of symbols and notes	3-15
general	3-13
how to use a flow chart	3-16
selecting proper flow chart	3-16
system troubleshooting flow charts	3-18
types of problems	3-14
Type of manual	1-1

U

| Unpacking and inspecting unpacked radio set items | 2-22 |

Index 7
<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-MODE/NORMAL switch, setting</td>
<td>3-151</td>
</tr>
<tr>
<td>R-442</td>
<td></td>
</tr>
<tr>
<td>RT-246 AND RT-524</td>
<td>3-148</td>
</tr>
</tbody>
</table>

Index 8
RECOMMENDED CHANGES TO EQUIPMENT TECHNICAL PUBLICATIONS

SOMETHING WRONG WITH THIS PUBLICATION?

THEN.. JOT DOWN THE DOPE ABOUT IT ON THIS FORM. CAREFULLY TEAR IT OUT. FOLD IT AND DROP IT IN THE MAIL.

FROM (PRINT YOUR UNIT'S COMPLETE ADDRESS)

Your Mailing Address

DATE SENT

Date You Filled Out This Form

PUBLICATON NUMBER

TM 11-5820-401-20-1/ NAVY
EE150-JA-MM0-010/E154 VRC 12,43

PUBLICATON DATE

PUBLICATON TITLE

RADIO SETS: AN/VRC-12
(NSN 5820-00-223-7412)

IN THIS SPACE TELL WHAT IS WRONG
AND WHAT SHOULD BE DONE ABOUT IT:

Recommend that the installation antenna alignment procedure be changed throughout to specify a 2° IFF antenna lag rather than 1°.

REASON: Experience has shown that with only a 1° lag, the antenna servo system is too sensitive to wind gusting in excess of 25 knots, and has a tendency to rapidly accelerate and decelerate as it hunts, causing strain to the drive train. This is minimized by adjusting the lag to 2° without degradation of operation.

Item 5, Function column. Change "2 db" to "3db."

REASON: The adjustment procedure the the TRANS POWER FAULT indicator calls for a 3 db (500 watts) adjustment to light the TRANS POWER FAULT indicator.

Add new step f.1 to read, "Replace cover plate removed a step e.1, above."

REASON: To replace the cover plate.

Zone C 3. On J1-2. change "+24 VDC to "+5 VDC."

REASON: This is the output line of the 5 VDC power supply. +24 VDC is the input voltage.

PRINTED NAME GRADE OR TITLE AND TELEPHONE NUMBER

SSG I. M. DeSpiritof 999-1776

SIGN HERE

DA FORM 2028-2

PREVIOUS EDITIONS ARE OBSOLETE.

P.S. IF YOUR OUTFIT WANTS TO KNOW ABOUT YOUR RECOMMENDATION MAKE A CARBON COPY OF THIS AND GIVE IT TO YOUR HEADQUARTERS.
DEPARTMENT OF THE ARMY

OFFICIAL BUSINESS

US Army Communications-Electronics Command
and Fort Monmouth
AYYN: DRSEL-ME-MP
Fort Monmouth, New Jersey 077C3
RECOMMENDED CHANGES TO EQUIPMENT TECHNICAL PUBLICATIONS

SOMETHING WRONG WITH THIS PUBLICATION?

THEN JOT DOWN THE DOPE ABOUT IT ON THIS FORM, CAREFULLY TEAR IT OUT, FOLD IT AND DROP IT IN THE MAIL!

FROM: (PRINT YOUR UNIT'S COMPLETE ADDRESS)

DATE SENT

PUBLICATION NUMBER
TM 11-5820-401-20-1/ NAVY
EE150-JA-MMO-010/E154 VRC 12,43

PUBLICATION TITLE
RADIO SETS: AN/VRC-12
(ASN 5820-00-223-7412)

PUBLICATION DATE
3 Jan 1984

BE EXACT... PIN-POINT WHERE IT IS
IN THIS SPACE TELL WHAT IS WRONG
AND WHAT SHOULD BE DONE ABOUT IT:

PAGE NO PARAGRAPH NO FIGURE NO TABLE NO

PRINTED NAME, GRADE OR TITLE, AND TELEPHONE NUMBER

SIGN HERE

DA FORM 2028-2 1 JUL 75

PREVIOUS EDITIONS ARE OBSOLETE.

P.S.--IF YOUR OUTFIT WANTS TO KNOW ABOUT YOUR RECOMMENDATION MAKE A CARBON COPY OF THIS AND GIVE IT TO YOUR HEADQUARTERS
Commander
US Army Communications-Electronics Command
and Fort Monmouth
AYYN: DRSEL-ME-MP
Fort Monmouth, New Jersey 07703
SOMETHING WRONG

WITH THIS PUBLICATION?

THEN. .. JOT DOWN THE DOPE ABOUT IT ON THIS FORM, CAREFULLY TEAR IT OUT, FOLD IT AND DROP IT IN THE MAIL.

FROM: (PRINT YOUR UNIT'S COMPLETE ADDRESS)

DATE SENT

<table>
<thead>
<tr>
<th>PUBLICATION NUMBER</th>
<th>PUBLICATION DATE</th>
<th>PUBLICATION TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM 11-5820-401-20-1/ NAVY</td>
<td>3 Jan 1984</td>
<td>RADIO SETS: AN/VRC-12</td>
</tr>
<tr>
<td>EE150-JA-MMO-010/E154 VRC 12,43</td>
<td></td>
<td>(NSN 5820-00-223-7412)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAGE NO</th>
<th>PARAGRAPH NO</th>
<th>FIGURE NO</th>
<th>TABLE NO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IN THIS SPACE TELL WHAT IS WRONG AND WHAT SHOULD BE DONE ABOUT IT:

PRINTED NAME, GRADE OR TITLE, AND TELEPHONE NUMBER

SIGN HERE

DA FORM 2028-2

PREVIOUS EDITIONS ARE OBSOLETE.

P.S.: IF YOUR OUTFIT WANTS TO KNOW ABOUT YOUR RECOMMENDATION MAKE A CARBON COPY OF THIS AND GIVE IT TO YOUR HEADQUARTERS
Commander
US Army Communications-Electronics Command
and Fort Monmouth
AYYN: DRSEL-ME-MP
Fort Monmouth, New Jersey 07703
<table>
<thead>
<tr>
<th>PAGE NO</th>
<th>PARAGRAPH NO</th>
<th>FIGURE NO</th>
<th>TABLE NO</th>
</tr>
</thead>
</table>

IN THIS SPACE TELL WHAT IS WRONG AND WHAT SHOULD BE DONE ABOUT IT:

P.S. IF YOUR OUTFIT WANTS TO KNOW ABOUT YOUR RECOMMENDATION MAKE A CARBON COPY OF THIS AND GIVE IT TO YOUR HEADQUARTERS.
Commander
US Army Communications-Electronics Command
and Fort Monmouth
AYYN: DRSEL-ME-MP
Fort Monmouth, New Jersey 07703
By Order of the Secretaries of the Army and the Navy:

JOHN A. WICKHAM JR.
General, United States Army
Chief of Staff

ROBERT M. JOYCE
Major General, United States Army
The Adjutant General

G. B. SCHICK, JR.
Rear Admiral, United States Navy
Commander, Naval Electronic System Command

DISTRIBUTION:
To be distributed in accordance with DA Form 12-51 requirements for AN/VRC-12, AN/VRC-43 thru 49.

To use charts P02 and P03:

1. Locate transmitter frequency using bottom of chart.
2. Follow a straight line up the chart.
3. Related interference is likely to occur where the straight line (if drawn) crosses a heavy black line.
4. Read mutual inductance frequency on left of chart.

Example:

Using P03, find the interference in both between 37.45 MHz and the following: 22.794 MHz, 34.26 MHz and 34.69 MHz c/o 0 MHz, 32.48 MHz c/o 37.36 MHz.

5. When using multiplex transmission configurations, the two elements must be separated by at least 12 MHz.